Skip to main content

Advertisement

Log in

Induction of CD4+CD25+Foxp3+ regulatory T cells by mesenchymal stem cells is associated with RUNX complex factors

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Among the particular immunomodulation properties of mesenchymal stem cells (MSCs), one relies on their capacity to regulatory T cell (Treg) induction from effector T cells. Stable expression of Foxp3 has a dominant role in suppressive phenotype and stability of induced regulatory T cells (iTregs). How MSCs induce stable Foxp3 expression in iTregs remains unknown. We previously showed MSCs could enhance demethylation of Treg-specific demethylated region (TSDR) in iTregs in cell-cell contact manner (unpublished data). Here, we evaluated the possible effect of MSCs on the mRNA expression of Runx complex genes (Runx1, Runx3, and CBFB) that perch on TSDR in iTregs and play the main role in suppressive properties of Tregs, a regulatory pathway that has not yet been explored by MSCs. Also, we investigated the mRNA expression of MBD2 that promotes TSDR demethylation in Tregs. We first showed that in vitro MSC-iTreg induction was associated with strong mRNA modifications of genes involved in Runx complex. We next injected high doses of MSCs in a murine model of C57BL/6 into Balb/C allogeneic skin transplantation to prolong allograft survival. When splenocytes of grafted mice were analyzed, we realized that the Foxp3 expression was increased at day 5 and 10 post-graft merely in MSC-treated mice. Furthermore, Foxp3 mRNA expression was associated with modified Runx complex mRNA expression comparable to what was shown in in vitro studies. Hence, our data identify a possible mechanism in which MSCs convert conventional T cells to iTreg through strong modifications of mRNA of genes that are involved in Runx complex of Foxp3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MSCs:

Mesenchymal stem cells

iTregs:

Induced regulatory T cells

DCs:

Dendritic cells

NKs:

Natural killer cells

IL-12:

Interleukin-12

TNFα:

Tumor necrosis factor-α

nTregs:

Natural Tregs

References

  1. Wang Y, Zhang A, Ye Z, Xie H, Zheng S. Bone marrow-derived mesenchymal stem cells inhibit acute rejection of rat liver allografts in association with regulatory T-cell expansion. Transplant. Proc. [Internet]. 2009;41:4352–6. [cited 2017 Feb 7] Available from: http://linkinghub.elsevier.com/retrieve/pii/S0041134509013669

    Article  CAS  Google Scholar 

  2. Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation [Internet]. 2010;90:1312–20. [cited 2017 Feb 7] Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00007890-201012270-00014

    Article  CAS  Google Scholar 

  3. Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol [Internet]. 2008;181:3933–46. [cited 2017 Feb 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/18768848

    Article  CAS  Google Scholar 

  4. Cohen JL, Sudres M. A role for mesenchymal stem cells in the control of graft-versus-host disease. Transplantation [Internet]. 2009;87:S53–4. [cited 2017 Feb 13] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19424007

    Article  Google Scholar 

  5. Parekkadan B, Tilles AW, Yarmush ML. Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independently of regulatory T cells. Stem Cells [Internet]. 2008;26:1913–9. [cited 2017 Feb 7] Available from: http://doi.wiley.com/10.1634/stemcells.2007-0790

    Article  Google Scholar 

  6. Duffy MM, Ritter T, Ceredig R, Griffin MD. Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther [Internet]. 2011;2:34. [cited 2017 Feb 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/21861858

    Article  CAS  Google Scholar 

  7. Reinders ME, Hoogduijn MJ. NK cells and MSCs: possible implications for MSC therapy in renal transplantation. J Stem Cell Res Ther [Internet]. 2014;4:1000166. Europe PMC Funders; [cited 2017 Feb 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/24900946

    PubMed Central  Google Scholar 

  8. Cahill EF, Tobin LM, Carty F, Mahon BP, English K. Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Ther [Internet]. 2015;6:19. BioMed Central; [cited 2017 Feb 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/25890330

    Article  Google Scholar 

  9. Djouad F, Charbonnier L-M, Bouffi C, Louis-Plence P, Bony C, Apparailly F, et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells [Internet]. 2007;25:2025–32. [cited 2017 Feb 7] Available from: http://doi.wiley.com/10.1634/stemcells.2006-0548

    Article  CAS  Google Scholar 

  10. Ramasamy R, Fazekasova H, Lam EW-F, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation [Internet]. 2007;83:71–6. [cited 2017 Feb 7] Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00007890-200701150-00014

    Article  Google Scholar 

  11. Li Y-P, Paczesny S, Lauret E, Poirault S, Bordigoni P, Mekhloufi F, et al. Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J Immunol [Internet]. 2008;180:1598–608. [cited 2017 Feb 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/18209056

    Article  CAS  Google Scholar 

  12. Sakaguchi S, Yamaguchi T, Nomura T, Ono M, Regulatory T. Cells and immune tolerance. Cell. 2008;133(5):775–87. https://doi.org/10.1016/j.cell.2008.05.009.

    Article  CAS  PubMed  Google Scholar 

  13. Lin X, Chen M, Liu Y, Guo Z, He X, Brand D, et al. Advances in distinguishing natural from induced Foxp3(+) regulatory T cells. Int J Clin Exp Pathol [Internet]. 2013;6:116–23. e-Century Publishing Corporation; [cited 2017 Feb 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23329997

    Google Scholar 

  14. Kavanagh H, Mahon BP. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy [Internet]. 2011;66:523–31. [cited 2017 Feb 11] Available from: http://www.ncbi.nlm.nih.gov/pubmed/21091718

    Article  CAS  Google Scholar 

  15. Tatara R, Ozaki K, Kikuchi Y, Hatanaka K, Oh I, Meguro A, et al. Mesenchymal stromal cells inhibit Th17 but not regulatory T-cell differentiation. Cytotherapy [Internet]. 2011;13:686–94. [cited 2017 Feb 11] Available from: http://www.ncbi.nlm.nih.gov/pubmed/21171824

    Article  CAS  Google Scholar 

  16. Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation [Internet]. 2010;90:1312–20. [cited 2017 Feb 11] Available from: http://www.ncbi.nlm.nih.gov/pubmed/21042238

    Article  CAS  Google Scholar 

  17. Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev [Internet]. 2011;241:260–8. [cited 2017 Feb 7] Available from: http://doi.wiley.com/10.1111/j.1600-065X.2011.01018.x

    Article  CAS  Google Scholar 

  18. Kim H-P, Leonard WJ. CREB/ATF-dependent T cell receptor–induced FoxP3 gene expression: a role for DNA methylation. J Exp Med [Internet]. 2007;204:1543–51. [cited 2017 Apr 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/17591856

    Article  CAS  PubMed Central  Google Scholar 

  19. Szyf M, Bhattacharya SK, Ramchandani S, Cervoni N. A mammalian protein with specific demethylase activity for mCpG DNA. Nature [Internet]. 1999;397:579–83. [cited 2017 Apr 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/10050851

    Article  Google Scholar 

  20. Balada E, Ordi-Ros J, Serrano-Acedo S, Martinez-Lostao L, Vilardell-Tarres M. Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients. J Leukoc Biol [Internet]. 2007;81:1609–16. [cited 2017 Apr 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/17360956

    Article  CAS  Google Scholar 

  21. Lei W, Luo Y, Lei W, Luo Y, Yan K, Zhao S, et al. Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol [Internet]. 2009;38:369–74. [cited 2017 Apr 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19444718

    Article  CAS  Google Scholar 

  22. Liu C-C, Fang T-J, Ou T-T, Wu C-C, Li R-N, Lin Y-C, et al. Global DNA methylation, DNMT1, and MBD2 in patients with rheumatoid arthritis. Immunol Lett [Internet]. 2011;135:96–9. [cited 2017 Apr 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/20937307

    Article  CAS  Google Scholar 

  23. Zhang P, Su Y, Chen H, Zhao M, Lu Q. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J Dermatol Sci [Internet]. 2010;60:40–2. [cited 2017 Apr 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/20800455

    Article  CAS  Google Scholar 

  24. Wang L, Liu Y, Han R, Beier UH, Thomas RM, Wells AD, et al. Mbd2 promotes Foxp3 demethylation and T-regulatory-cell function. Mol Cell Biol [Internet]. 2013;33:4106–15. [cited 2017 Apr 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23979593

    Article  CAS  Google Scholar 

  25. Rudra D, Egawa T, Chong MMW, Treuting P, Littman DR, Rudensky AY. Runx-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol [Internet]. 2009;10:1170–7. [cited 2017 Apr 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19767756

    Article  CAS  Google Scholar 

  26. Moravej A, Karimi M-H, Geramizadeh B, Hossein Aghdaie M, Kohi-Hoseinabadi O, Ebrahimnezhad S. Effect of mesenchymal stem cells on ilt3 expression in the splenocytes of skin graft recipient mice. Iran J Immunol [Internet]. 2016;13:274–88. [cited 2017 Jun 23] Available from: http://www.ncbi.nlm.nih.gov/pubmed/27999239

    Google Scholar 

  27. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25High forkhead box P3+ regulatory T cells. Clin Exp Immunol [Internet]. 2009;156:149–60. [cited 2017 Apr 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19210524

    Article  CAS  Google Scholar 

  28. Gonzalez-Rey E, Gonzalez MA, Varela N, O’Valle F, Hernandez-Cortes P, Rico L, et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis [Internet]. 2010;69:241–8. [cited 2017 Apr 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19124525

    Article  CAS  Google Scholar 

  29. Luz-Crawford P, Kurte M, Bravo-Alegría J, Contreras R, Nova-Lamperti E, Tejedor G, et al. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther [Internet]. 2013;4:65. [cited 2017 Apr 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23734780

    Article  CAS  Google Scholar 

  30. Cutler AJ, Limbani V, Girdlestone J, Navarrete CV. Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol [Internet]. 2010;185:6617–23. [cited 2017 Apr 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/20980628

    Article  CAS  Google Scholar 

  31. Wang Q, Sun B, Wang D, Ji Y, Kong Q, Wang G, et al. Murine bone marrow mesenchymal stem cells cause mature dendritic cells to promote T-cell tolerance. Scand J Immunol [Internet]. 2008;68:607–15. [cited 2017 Apr 14] Available from: http://doi.wiley.com/10.1111/j.1365-3083.2008.02180.x

    Article  CAS  Google Scholar 

  32. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25High forkhead box P3+ regulatory T cells. Clin Exp Immunol [Internet]. 2009;156:149–60. [cited 2017 Feb 11] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19210524

    Article  CAS  Google Scholar 

  33. Fantini MC, Dominitzki S, Rizzo A, Neurath MF, Becker C. In vitro generation of CD4+CD25+ regulatory cells from murine naive T cells. Nat Protoc [Internet]. 2007;2:1789–94. Nature Publishing Group; [cited 2017 Feb 8] Available from: http://www.nature.com/doifinder/10.1038/nprot.2007.258

    Article  CAS  Google Scholar 

  34. Collison LW, Vignali DAA. In vitro Treg suppression assays. Methods Mol Biol [Internet]. 2011;21–37. [cited 2017 Feb 8] Available from: http://www.ncbi.nlm.nih.gov/pubmed/21287326

  35. Madec AM, Mallone R, Afonso G, Abou Mrad E, Mesnier A, Eljaafari A, et al. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia [Internet]. 2009;52:1391–9. [cited 2017 Feb 11] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19421731

    Article  CAS  Google Scholar 

  36. Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β. J Immunol [Internet]. 2010;184:5885–94. [cited 2017 Feb 11] Available from: http://www.ncbi.nlm.nih.gov/pubmed/20382885

    Article  CAS  Google Scholar 

  37. van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CPJ, Pals CEGM, et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases treg-cell-suppressive capacity. Immunity [Internet]. 2013;39:259–71. [cited 2017 Feb 8] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23973222

    Article  Google Scholar 

  38. Durst KL, Hiebert SW. Role of RUNX family members in transcriptional repression and gene silencing. Oncogene [Internet]. 2004;23:4220–4. [cited 2017 Apr 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/15156176

    Article  CAS  Google Scholar 

  39. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature [Internet]. 2007;446:685–9. [cited 2017 Apr 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/17377532

    Article  CAS  Google Scholar 

  40. Bowles AC, Scruggs BA, Bunnell BA. Mesenchymal stem cell-based therapy in a mouse model of experimental autoimmune encephalomyelitis (EAE). Methods Mol Biol [Internet]. 2014;303–19. [cited 2017 Feb 11] Available from: http://www.ncbi.nlm.nih.gov/pubmed/25173393

  41. Park K-H, Mun CH, Kang M-I, Lee S-W, Lee S-K, Park Y-B. Treatment of collagen-induced arthritis using immune modulatory properties of human mesenchymal stem cells. Cell Transplant [Internet]. 2015;25:1057–72. [cited 2017 Feb 11] Available from: http://www.ncbi.nlm.nih.gov/pubmed/25853338

    Article  Google Scholar 

  42. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371(9624):1579–86. https://doi.org/10.1016/S0140-6736(08)60690-X.

    Article  PubMed  Google Scholar 

  43. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):1439–41. https://doi.org/10.1016/S0140-6736(04)16104-7.

    Article  PubMed  Google Scholar 

  44. English K. Mesenchymal stem cells to promote islet transplant survival. Curr Opin Organ Transplant [Internet]. 2016;21:568–73. [cited 2017 Feb 11] Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00075200-201612000-00005

    Article  CAS  Google Scholar 

  45. Tian Y, Wang J, Wang W, Ding Y, Sun Z, Zhang Q, et al. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Res Ther [Internet]. 2016;7:157. BioMed Central; [cited 2017 Feb 11] Available from: http://stemcellres.biomedcentral.com/articles/10.1186/s13287-016-0416-y

    Article  Google Scholar 

  46. Casiraghi F, Perico N, Cortinovis M, Remuzzi G. Mesenchymal stromal cells in renal transplantation: opportunities and challenges. Nat Rev Nephrol [Internet]. 2016;12:241–53. Nature Research [cited 2017 Feb 11] Available from: http://www.nature.com/doifinder/10.1038/nrneph.2016.7

    Article  CAS  Google Scholar 

  47. Khosravi M, Karimi MH, Hossein Aghdaie M, Kalani M, Naserian S, Bidmeshkipour A. Mesenchymal stem cells can induce regulatory T cells via modulating miR-126a but not miR-10a. Gene [Internet]. 2017;627:327–36. [cited 2017 Jul 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/28600182

    Article  CAS  Google Scholar 

  48. Barbi J, Pardoll DM, Pan F. Ubiquitin-dependent regulation of Foxp3 and Treg function. Immunol Rev [Internet]. 2015;266:27–45. [cited 2017 Feb 11] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26085205

    Article  CAS  Google Scholar 

  49. Chen Z, Barbi J, Bu S, Yang H-Y, Li Z, Gao Y, et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity [Internet]. 2013;39:272–85. [cited 2017 Feb 8] Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761313003348

    Article  CAS  Google Scholar 

  50. Choi S-C, Lee H, Choi J-H, Kim J-H, Park C-Y, Joo H-J, et al. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. Aalto-Setala K, editor. PLoS One [Internet]. 2015;10:e0117410. [cited 2017 Apr 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/25629977.

Download references

Acknowledgements

MK would like to express her deep gratitude to Professor José L. Cohen, Shiraz Organ Transplant Research Center, IFRES-INT, and INSERM U1197 team 1, for constant supporting.

Author information

Authors and Affiliations

Authors

Contributions

MK built and performed the experiments, analyzed the data, and wrote the manuscript. MHK and AB contributed to building the research and revised the manuscript. AM performed the experiments and revised the manuscript. SHA analyzed the data and revised the manuscript. SN assisted with experimental revisions and wrote the manuscript.

Corresponding authors

Correspondence to Ali Bidmeshkipour or Mohammad Hossein Karimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

SN and MHK are co-last authors

Electronic supplementary material

ESM 1

(DOCX 1935 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, M., Bidmeshkipour, A., Moravej, A. et al. Induction of CD4+CD25+Foxp3+ regulatory T cells by mesenchymal stem cells is associated with RUNX complex factors. Immunol Res 66, 207–218 (2018). https://doi.org/10.1007/s12026-017-8973-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-017-8973-4

Keywords

Navigation