Immunologic Research

, Volume 65, Issue 5, pp 1046–1058 | Cite as

Von Willebrand factor protects against acute CCl4-induced hepatotoxicity through phospho-p38 MAPK signaling pathway inhibition

  • Hai-Jian Sun
  • Jian Chen
  • Hao Zhang
  • Bing Ni
  • Jennifer C. van Velkinburgh
  • Yao Liu
  • Yu-Zhang Wu
  • Xia Yang
Original Article


The blood glycoprotein von Willebrand factor (vWF) is involved in coagulopathy and inflammation; however, its role in the pathogenesis of acute liver failure, as suggested by its higher expression levels in such patients, remains unknown. In this study, vWF-knockout (KO) mice showed more severe carbon tetrachloride (CCl4)-induced liver injury than wild-type mice. Patients with acute liver injury also showed elevated vWF protein activity and expression in liver tissues, as compared to healthy individuals. Using the mouse model and cultured human umbilical vein endothelial cells (HUVECs), CCl4 was found to directly increase vWF protein expression through interaction with the highly expressed vWF receptor, GPIbα. Microarray analysis revealed that the genes showing the most differential expression in response to CCl4-induced liver injury and vWF deficiency were related to the MAPK signaling pathway. Subsequent inhibition of vWF protein activity in HUVECs led to activation of the MAPK signal pathway and elevated production of FGL2, and treatment with a phospho-p38 inhibitor suppressed the CCl4-induced production of FGL2. Exposure of liver sinusoidal endothelial cells isolated from the vWF-KO acute liver injury model mice to phospho-p38 inhibitor also decreased FGL2 expression. The vWF/GPIbα axis plays a protective role against development of acute liver injury by attenuating FGL2 production through the MAPK signaling pathway. Collectively, these data provide insight into the pathogenesis of acute liver injury and a potential novel strategy for its treatment.


von Willebrand Factor Acute liver injury Carbon tetrachloride Fibrinogen-like protein 2 



We would like to thank Chen-hui Wang for isolating the LSECs from mice and Xiao-he Shen for technical assistance in the Ets-1 siRNA transduction investigations.


This research was supported by grants from the National Natural Science Foundation of China (no. 31500710 and no. 31500720) and the National Key Research and Development Project (2016YFA0502204).

Authors’ contributions

XY and YZW conceived of and designed the study; HJS, JC, and HZ carried out the experiments; YL collected the specimens from patients and healthy donors; XY, HJS, JC, HZ, and BN analyzed and interpreted the data; JCvV made critical revision to the article for important intellectual content. All authors made substantial contributions towards drafting the manuscript, reviewing the final manuscript for intellectual content, and authorizing the submission.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    McAvoy N, Thomson E, Wilson ES. Hepatic failure. Anaesth Intensive Care Med. 2012;13(4):161–5.CrossRefGoogle Scholar
  2. 2.
    Polson J, Lee WM. American Association for the Study of Liver D. AASLD position paper: the management of acute liver failure. Hepatology. 2005;41(5):1179–97.CrossRefPubMedGoogle Scholar
  3. 3.
    Habib M, Roberts LN, Patel RK, Wendon J, Bernal W, Arya R. Evidence of rebalanced coagulation in acute liver injury and acute liver failure as measured by thrombin generation. Liver Int. 2014;34(5):672–8.CrossRefPubMedGoogle Scholar
  4. 4.
    De Ceunynck K, De Meyer SF, Vanhoorelbeke K. Unwinding the von Willebrand factor strings puzzle. Blood. 2013;121(2):270–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Lenting PJ, VANS CJ, Denis CV. Clearance mechanisms of von Willebrand factor and factor VIII. J Thromb Haemost. 2007;5(7):1353–60.CrossRefPubMedGoogle Scholar
  6. 6.
    Luo GP, Ni B, Yang X, Wu YZ. von Willebrand factor: more than a regulator of hemostasis and thrombosis. Acta Haematol. 2012;128(3):158–69.CrossRefPubMedGoogle Scholar
  7. 7.
    Lenting PJ, Westein E, Terraube V, Ribba AS, Huizinga EG, Meyer D, et al. An experimental model to study the in vivo survival of von Willebrand factor. Basic aspects and application to the R1205H mutation. J Biol Chem. 2004;279(13):12102–9.CrossRefPubMedGoogle Scholar
  8. 8.
    van Schooten CJ, Shahbazi S, Groot E, Oortwijn BD, van den Berg HM, Denis CV, et al. Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. Blood. 2008;112(5):1704–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Petri B, Broermann A, Li H, Khandoga AG, Zarbock A, Krombach F, et al. von Willebrand factor promotes leukocyte extravasation. Blood. 2010;116(22):4712–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Zheng N, Shi X, Chen X, Lv W. Associations between inflammatory markers, hemostatic markers, and microvascular complications in 182 Chinese patients with type 2 diabetes mellitus. Lab Med. 2015;46(3):214–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Reuken PA, Kussmann A, Kiehntopf M, Budde U, Stallmach A, Claus RA, et al. Imbalance of von Willebrand factor and its cleaving protease ADAMTS13 during systemic inflammation superimposed on advanced cirrhosis. Liver Int. 2015;35(1):37–45.CrossRefPubMedGoogle Scholar
  12. 12.
    Hugenholtz GC, Adelmeijer J, Meijers JC, Porte RJ, Stravitz RT, Lisman T. An unbalance between von Willebrand factor and ADAMTS13 in acute liver failure: implications for hemostasis and clinical outcome. Hepatology. 2013;58(2):752–61.CrossRefPubMedGoogle Scholar
  13. 13.
    Kelley D, Lester C, Shaw S, de Laforcade A, Webster CR. Thromboelastographic evaluation of dogs with acute liver disease. J Vet Intern Med. 2015;29(4):1053–62.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yan J, Kong LY, Hu J, Gabrusiewicz K, Dibra D, Xia X et al. FGL2 as a multimodality regulator of tumor-mediated immune suppression and therapeutic target in gliomas. J Natl Cancer Inst. 2015;107(8).Google Scholar
  15. 15.
    Marazzi S, Blum S, Hartmann R, Gundersen D, Schreyer M, Argraves S, et al. Characterization of human fibroleukin, a fibrinogen-like protein secreted by T lymphocytes. J Immunol. 1998;161(1):138–47.PubMedGoogle Scholar
  16. 16.
    Ghanekar A, Mendicino M, Liu H, He W, Liu M, Zhong R, et al. Endothelial induction of fgl2 contributes to thrombosis during acute vascular xenograft rejection. J Immunol. 2004;172(9):5693–701.CrossRefPubMedGoogle Scholar
  17. 17.
    Liu J, Tan Y, Zhang J, Zou L, Deng G, Xu X, et al. C5aR, TNF-alpha, and FGL2 contribute to coagulation and complement activation in virus-induced fulminant hepatitis. J Hepatol. 2015;62(2):354–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Xu GL, Chen J, Yang F, Li GQ, Zheng LX, Wu YZ. C5a/C5aR pathway is essential for the pathogenesis of murine viral fulminant hepatitis by way of potentiating Fgl2/fibroleukin expression. Hepatology. 2014;60(1):114–24.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu M, Mendicino M, Ning Q, Ghanekar A, He W, McGilvray I, et al. Cytokine-induced hepatic apoptosis is dependent on FGL2/fibroleukin: the role of Sp1/Sp3 and STAT1/PU.1 composite cis elements. J Immunol. 2006;176(11):7028–38.CrossRefPubMedGoogle Scholar
  20. 20.
    Hancock WW, Szaba FM, Berggren KN, Parent MA, Mullarky IK, Pearl J, et al. Intact type 1 immunity and immune-associated coagulative responses in mice lacking IFN gamma-inducible fibrinogen-like protein 2. Proc Natl Acad Sci U S A. 2004;101(9):3005–10.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Selzner N, Liu H, Boehnert MU, Adeyi OA, Shalev I, Bartczak AM, et al. FGL2/fibroleukin mediates hepatic reperfusion injury by induction of sinusoidal endothelial cell and hepatocyte apoptosis in mice. J Hepatol. 2012;56(1):153–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu M, Leibowitz JL, Clark DA, Mendicino M, Ning Q, Ding JW, et al. Gene transcription of fgl2 in endothelial cells is controlled by Ets-1 and Oct-1 and requires the presence of both Sp1 and Sp3. Eur J Biochem. 2003;270(10):2274–86.CrossRefPubMedGoogle Scholar
  23. 23.
    Pritchard MT, Cohen JI, Roychowdhury S, Pratt BT, Nagy LE. Early growth response-1 attenuates liver injury and promotes hepatoprotection after carbon tetrachloride exposure in mice. J Hepatol. 2010;53(4):655–62.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yang X, Sun HJ, Li ZR, Zhang H, Yang WJ, Ni B, et al. Gastric cancer-associated enhancement of von Willebrand factor is regulated by vascular endothelial growth factor and related to disease severity. BMC Cancer. 2015;15:80.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22(6):696–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Ogawa K, Ohtsuki K, Shibata T, Aoki M, Nakayama M, Kitamura Y, et al. Development and evaluation of a novel (99m)tc-labeled annexin A5 for early detection of response to chemotherapy. PLoS One. 2013;8(12):e81191.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Szanto T, Vanhoorelbeke K, Toth G, Vandenbulcke A, Toth J, Noppe W, et al. Identification of a VWF peptide antagonist that blocks platelet adhesion under high shear conditions by selectively inhibiting the VWF-collagen interaction. J Thromb Haemost. 2009;7(10):1680–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Birkenkamp KU, Tuyt LM, Lummen C, Wierenga AT, Kruijer W, Vellenga E. The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway. Br J Pharmacol. 2000;131(1):99–107.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    El Taghdouini A, Sorensen AL, Reiner AH, Coll M, Verhulst S, Mannaerts I, et al. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget. 2015;6(29):26729–45.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mohar I, Brempelis KJ, Murray SA, Ebrahimkhani MR, Crispe IN. Isolation of non-parenchymal cells from the mouse liver. Methods Mol Biol. 2015;1325:3–17.CrossRefPubMedGoogle Scholar
  31. 31.
    Huang X, Shao L, Gong Y, Mao Y, Liu C, Qu H, et al. A metabonomic characterization of CCl4-induced acute liver failure using partial least square regression based on the GC/MS metabolic profiles of plasma in mice. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;870(2):178–85.CrossRefPubMedGoogle Scholar
  32. 32.
    Mark AL, Sun Z, Warren DS, Lonze BE, Knabel MK, Melville Williams GM, et al. Stem cell mobilization is life saving in an animal model of acute liver failure. Ann Surg. 2010;252(4):591–6.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Englund GD, Bodnar RJ, Li Z, Ruggeri ZM, Du X. Regulation of von Willebrand factor binding to the platelet glycoprotein Ib-IX by a membrane skeleton-dependent inside-out signal. J Biol Chem. 2001;276(20):16952–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Clemetson KJ. A short history of platelet glycoprotein Ib complex. Thromb Haemost. 2007;98(1):63–8.PubMedGoogle Scholar
  35. 35.
    Jeong JM, Kim JW, Kim DH, Park CI. First molecular cloning and gene expression analysis of teleost CD42 (glycoprotein Ib beta chain) GPIb-IX-V subunit from rock bream. Dev Comp Immunol. 2015;49(2):298–302.CrossRefPubMedGoogle Scholar
  36. 36.
    Yap CL, Anderson KE, Hughan SC, Dopheide SM, Salem HH, Jackson SP. Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin alpha(IIb)beta(3). Blood. 2002;99(1):151–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Yin H, Liu J, Li Z, Berndt MC, Lowell CA, Du X. Src family tyrosine kinase Lyn mediates VWF/GPIb-IX-induced platelet activation via the cGMP signaling pathway. Blood. 2008;112(4):1139–46.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Siller-Matula JM, Merhi Y, Tanguay JF, Duerschmied D, Wagner DD, McGinness KE, et al. ARC15105 is a potent antagonist of von Willebrand factor mediated platelet activation and adhesion. Arterioscler Thromb Vasc Biol. 2012;32(4):902–9.CrossRefPubMedGoogle Scholar
  39. 39.
    McElroy AK, Erickson BR, Flietstra TD, Rollin PE, Towner JS, Nichol ST, et al. Von Willebrand factor is elevated in individuals infected with Sudan virus and is associated with adverse clinical outcomes. Viral Immunol. 2015;28(1):71–3.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Liu Y, Wang X, Li S, Hu H, Zhang D, Hu P, et al. The role of von Willebrand factor as a biomarker of tumor development in hepatitis B virus-associated human hepatocellular carcinoma: a quantitative proteomic based study. J Proteome. 2014;106:99–112.CrossRefGoogle Scholar
  41. 41.
    Khan MR, Ahmed D. Protective effects of Digera muricata (L.) Mart. on testis against oxidative stress of carbon tetrachloride in rat. Food Chem Toxicol. 2009;47(6):1393–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Ryu J, Lee JW. TM4SF5-mediated roles in the development of fibrotic phenotypes. Mediat Inflamm. 2017;2017:5108525.CrossRefGoogle Scholar
  43. 43.
    Li X, Wang L, Chen C. Effects of exogenous thymosin beta4 on carbon tetrachloride-induced liver injury and fibrosis. Sci Rep. 2017;7(1):5872.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rahmouni F, Saoudi M, Amri N, El-Feki A, Rebai T, Badraoui R. Protective effect of Teucrium polium on carbon tetrachloride induced genotoxicity and oxidative stress in rats. Arch Physiol Biochem. 2017:1–9.Google Scholar
  45. 45.
    Sikka SC, Rajasekaran M, Hellstrom WJ. Role of oxidative stress and antioxidants in male infertility. J Androl. 1995;16(6):464–8.PubMedGoogle Scholar
  46. 46.
    Minamino T, Ito Y, Ohkubo H, Shimuzu Y, Kojo K, Nishizwa N, et al. Adhesion of platelets through thromboxane A(2) receptor signaling facilitates liver repair during acute chemical-induced hepatotoxicity. Life Sci. 2015;132:85–92.CrossRefPubMedGoogle Scholar
  47. 47.
    De Meyer SF, Stoll G, Wagner DD, Kleinschnitz C. von Willebrand factor: an emerging target in stroke therapy. Stroke. 2012;43(2):599–606.CrossRefPubMedGoogle Scholar
  48. 48.
    Pepin M, Kleinjan A, Hajage D, Buller HR, Di Nisio M, Kamphuisen PW, et al. ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer. J Thromb Haemost. 2016;14(2):306–15.CrossRefPubMedGoogle Scholar
  49. 49.
    Wu H, Yan S, Wang G, Cui S, Zhang C, Zhu Q. von Willebrand factor as a novel noninvasive predictor of portal hypertension and esophageal varices in hepatitis B patients with cirrhosis. Scand J Gastroenterol. 2015;50(9):1160–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Baruch Y, Neubauer K, Ritzel A, Wilfling T, Lorf T, Ramadori G. Von Willebrand gene expression in damaged human liver. Hepato-Gastroenterology. 2004;51(57):684–8.PubMedGoogle Scholar
  51. 51.
    Fang KF, Chen ZJ, Liu M, Wu PS, Yu DZ. Blood pH in coronary artery microthrombosis of rats. Asian Pac J Trop Med. 2015;8(10):864–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Marsden PA, Ning Q, Fung LS, Luo X, Chen Y, Mendicino M, et al. The Fgl2/fibroleukin prothrombinase contributes to immunologically mediated thrombosis in experimental and human viral hepatitis. J Clin Invest. 2003;112(1):58–66.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ganai AA, Khan AA, Malik ZA, Farooqi H. Genistein modulates the expression of NF-kappaB and MAPK (p-38 and ERK1/2), thereby attenuating d-Galactosamine induced fulminant hepatic failure in Wistar rats. Toxicol Appl Pharmacol. 2015;283(2):139–46.CrossRefPubMedGoogle Scholar
  54. 54.
    Ma L, Gong X, Kuang G, Jiang R, Chen R, Wan J. Sesamin ameliorates lipopolysaccharide/d-galactosamine-induced fulminant hepatic failure by suppression of Toll-like receptor 4 signaling in mice. Biochem Biophys Res Commun. 2015;461(2):230–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Hai-Jian Sun
    • 1
    • 2
  • Jian Chen
    • 1
  • Hao Zhang
    • 1
    • 3
  • Bing Ni
    • 4
  • Jennifer C. van Velkinburgh
    • 5
  • Yao Liu
    • 6
  • Yu-Zhang Wu
    • 1
  • Xia Yang
    • 1
  1. 1.Institute of ImmunologyThird Military Medical University (Military Medical University of the Army), PLAChongqingPeople’s Republic of China
  2. 2.EmbryologyNanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Out-patient Department of NO. 75737 ArmyPLAGuangzhouPeople’s Republic of China
  4. 4.Department of Pathophysiology and High Altitude PathologyThird Military Medical University (Military Medical University of the Army)ChongqingPeople’s Republic of China
  5. 5.van Velkinburgh Initiative for Collaboratory BioMedical ResearchSanta FeUSA
  6. 6.Department of PharmacySouthwestern HospitalChongqingPeople’s Republic of China

Personalised recommendations