Advertisement

Immunologic Research

, Volume 65, Issue 3, pp 757–768 | Cite as

Myeloid cells expressing high level of CD45 are associated with a distinct activated phenotype in glioma

  • Susan Brandenburg
  • Kati Turkowski
  • Annett Mueller
  • Yordan T. Radev
  • Sabine Seidlitz
  • Peter Vajkoczy
Original Article

Abstract

Glioblastoma multiforme is characterized by high accumulation of microglia/macrophages. The function of these tumor-infiltrating myeloid cells is not sufficiently elucidated. Therefore, a better understanding of the precise immune cell composition and function in brain tumors is required. In rodent glioma models, two different myeloid cell populations exist, determined by the expression level of CD45, namely CD11b+CD45low and CD11b+CD45high. Previous analyses of cytokine and marker expression profiles were almost exclusively performed on the entire myeloid cell fraction. Consequently, described pro- and anti-tumoral characteristics were not assigned to the evident subpopulations. In the present study, we used a syngeneic glioblastoma mouse model and subsequent flow cytometric analyses to demonstrate the distinct properties of CD11b+CD45high and the CD11b+CD45low cells. First, the majority of CD11b+CD45high cells expressed high level of GR1 and around 6% of IL10 representing in part features of myeloid-derived suppressor cells, while the CD11b+CD45low fraction displayed no upregulation of these molecules. Second, we detected that specifically the CD11b+CD45high population showed antigen-presenting, co-stimulatory, and inflammatory features. Here, we identified up to 80% of MHCII and approximately 50% of CD86 and TNFα-expressing cells. Investigation of MHCI and CD80 revealed a moderate upregulation. By contrast, in the CD11b+CD45low cell fraction, merely MHCII and TNFα were marginally overexpressed. In summary, these data emphasize the specific phenotype of CD11b+CD45high cells in glioma with suppressive as well as pro-inflammatory characteristics whereas the CD11b+CD45low cells were almost unaffected. Hence, primarily, the subpopulation consisting of CD45high-expressing cells is activated by the tumor and should be considered as therapeutic target.

Keywords

Microglia/macrophages CD11b+CD45+ Brain tumor GR1 MDSC 

Notes

Acknowledgments

The authors thank Prof. Dr. Michael Synowitz (Charité, Berlin; UKSH, Kiel) for assistance with this study. Additionally, we thank Matthäus Felsenstein, Daphne Felsenstein-Moore, and Alexander D. Bungert for critical reading of the manuscript.

Compliance with ethical standards

Animal experiments were conducted according to the German Law for Animal Protection and the National Institute of Health Guidelines for Care and Use of Laboratory Animals. The protocol for the animal studies was approved by the Landesamt für Gesundheit und Soziales, Berlin (Permit Number: LaGeSo No. G0152/09).

Funding

This work was supported by the German Research Foundation (DFG) SPP1190 and SFB TRR43.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs. 2009;18(8):1061–83. doi: 10.1517/13543780903052764.CrossRefPubMedGoogle Scholar
  2. 2.
    Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi: 10.1056/NEJMra0708126.CrossRefPubMedGoogle Scholar
  3. 3.
    Badie B, Schartner J. Role of microglia in glioma biology. Microsc Res Tech. 2001;54(2):106–13. doi: 10.1002/jemt.1125.CrossRefPubMedGoogle Scholar
  4. 4.
    Kushchayev SV, Kushchayeva YS, Wiener PC, Scheck AC, Badie B, Preul MC. Monocyte-derived cells of the brain and malignant gliomas: the double face of Janus. World Neurosurg. 2014;82(6):1171–86. doi: 10.1016/j.wneu.2012.11.059.CrossRefPubMedGoogle Scholar
  5. 5.
    Muller A, Brandenburg S, Turkowski K, Muller S, Vajkoczy P. Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int J Cancer. 2015;137(2):278–88. doi: 10.1002/ijc.29379.CrossRefPubMedGoogle Scholar
  6. 6.
    Roggendorf W, Strupp S, Paulus W. Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol. 1996;92(3):288–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Badie B, Schartner JM. Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery. 2000;46(4):957–61.PubMedGoogle Scholar
  8. 8.
    Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2011;59(8):1169–80. doi: 10.1002/glia.21136.CrossRefPubMedGoogle Scholar
  9. 9.
    Glass R, Synowitz M. CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol. 2014;128(3):347–62. doi: 10.1007/s00401-014-1274-2.CrossRefPubMedGoogle Scholar
  10. 10.
    Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20–7. doi: 10.1038/nn.4185.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Choi J, Stradmann-Bellinghausen B, Yakubov E, Savaskan NE, Regnier-Vigouroux A. Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biol Ther. 2015;16(8):1205–13. doi: 10.1080/15384047.2015.1056406.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hermiston ML, Xu Z, Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol. 2003;21:107–37. doi: 10.1146/annurev.immunol.21.120601.140946.CrossRefPubMedGoogle Scholar
  13. 13.
    Brandenburg S, Muller A, Turkowski K, Radev YT, Rot S, Schmidt C, et al. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol. 2016;131(3):365–78. doi: 10.1007/s00401-015-1529-6.CrossRefPubMedGoogle Scholar
  14. 14.
    Ellert-Miklaszewska A, Dabrowski M, Lipko M, Sliwa M, Maleszewska M, Kaminska B. Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia. 2013;61(7):1178–90. doi: 10.1002/glia.22510.CrossRefPubMedGoogle Scholar
  15. 15.
    Komohara Y, Horlad H, Ohnishi K, Fujiwara Y, Bai B, Nakagawa T, et al. Importance of direct macrophage-tumor cell interaction on progression of human glioma. Cancer Sci. 2012;103(12):2165–72. doi: 10.1111/cas.12015.CrossRefPubMedGoogle Scholar
  16. 16.
    Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, et al. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci U S A. 2009;106(30):12530–5. doi: 10.1073/pnas.0804273106.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhai H, Heppner FL, Tsirka SE. Microglia/macrophages promote glioma progression. Glia. 2011;59(3):472–85. doi: 10.1002/glia.21117.CrossRefPubMedGoogle Scholar
  18. 18.
    Galarneau H, Villeneuve J, Gowing G, Julien JP, Vallieres L. Increased glioma growth in mice depleted of macrophages. Cancer Res. 2007;67(18):8874–81. doi: 10.1158/0008-5472.CAN-07-0177.CrossRefPubMedGoogle Scholar
  19. 19.
    Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol. 2008;83(5):1136–44. doi: 10.1189/jlb.0907611.CrossRefPubMedGoogle Scholar
  20. 20.
    Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T, et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One. 2015;10(2):e0116644. doi: 10.1371/journal.pone.0116644.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kohanbash G, Okada H. Myeloid-derived suppressor cells (MDSCs) in gliomas and glioma-development. Immunol Investig. 2012;41(6–7):658–79. doi: 10.3109/08820139.2012.689591.CrossRefGoogle Scholar
  22. 22.
    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. doi: 10.1038/nri2506.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32(1):19–25. doi: 10.1016/j.it.2010.10.002.CrossRefPubMedGoogle Scholar
  24. 24.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. doi: 10.1038/nri3175.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50(3):799–807. doi: 10.1002/hep.23054.CrossRefPubMedGoogle Scholar
  26. 26.
    Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA, et al. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 2011;71(7):2664–74. doi: 10.1158/0008-5472.CAN-10-3055.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6(4):409–21. doi: 10.1016/j.ccr.2004.08.031.CrossRefPubMedGoogle Scholar
  28. 28.
    Sliwa M, Markovic D, Gabrusiewicz K, Synowitz M, Glass R, Zawadzka M, et al. The invasion promoting effect of microglia on glioblastoma cells is inhibited by cyclosporin A. Brain. 2007;130(Pt 2):476–89. doi: 10.1093/brain/awl263.CrossRefPubMedGoogle Scholar
  29. 29.
    Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S. A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun. 1996;224(3):855–62. doi: 10.1006/bbrc.1996.1112.CrossRefPubMedGoogle Scholar
  30. 30.
    Barker CF, Billingham RE. Immunologically privileged sites. Adv Immunol. 1977;25:1–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Ousman SS, Kubes P. Immune surveillance in the central nervous system. Nat Neurosci. 2012;15(8):1096–101. doi: 10.1038/nn.3161.CrossRefPubMedGoogle Scholar
  32. 32.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhu X, Fujita M, Snyder LA, Okada H. Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J Neuro-Oncol. 2011;104(1):83–92. doi: 10.1007/s11060-010-0473-5.CrossRefGoogle Scholar
  34. 34.
    Chae M, Peterson TE, Balgeman A, Chen S, Zhang L, Renner DN, et al. Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model. Neuro-Oncology. 2015;17(7):978–91. doi: 10.1093/neuonc/nou343.CrossRefPubMedGoogle Scholar
  35. 35.
    Thaci B, Ahmed AU, Ulasov IV, Wainwright DA, Nigam P, Auffinger B, et al. Depletion of myeloid-derived suppressor cells during interleukin-12 immunogene therapy does not confer a survival advantage in experimental malignant glioma. Cancer Gene Ther. 2014;21(1):38–44. doi: 10.1038/cgt.2013.81.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B. Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One. 2011;6(8):e23902. doi: 10.1371/journal.pone.0023902.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Susan Brandenburg
    • 1
  • Kati Turkowski
    • 1
  • Annett Mueller
    • 1
  • Yordan T. Radev
    • 1
  • Sabine Seidlitz
    • 1
  • Peter Vajkoczy
    • 1
    • 2
  1. 1.Department of Experimental NeurosurgeryCharité – Universitätsmedizin BerlinBerlinGermany
  2. 2.Department of NeurosurgeryCharité – Universitätsmedizin BerlinBerlinGermany

Personalised recommendations