Immunologic Research

, Volume 64, Issue 5–6, pp 1118–1132 | Cite as

HIV infection: focus on the innate immune cells

  • Milena S. Espíndola
  • Luana S. Soares
  • Leonardo J. Galvão-Lima
  • Fabiana A. Zambuzi
  • Maira C. Cacemiro
  • Verônica S. Brauer
  • Fabiani G. Frantz


Innate immune cells play a critical role during the onset of HIV infection and remain active until the final events that characterize AIDS. The viral impact on innate immune cell response may be a result of direct infection or indirect modulation, and each cell type responds in a specific manner to HIV. During HIV infection, the immune system works in a dynamic way, where innate and adaptive cells contribute with each other stimulating their function and modulating phenotypes and consequently infection resolution. Understanding the alterations in the cell populations induced by the virus is pivotal and can help to combat HIV at the time of infection and above all, to prevent the establishment of viral reservoirs. In this review, we will describe the frequency and the subtypes of infected cells such as of monocytes, DCs, neutrophils, eosinophils, mast cells/basophils, NK cells, NKT cells and γδ T cells, and we discuss the possibility of cell-targeting strategies. Our aim is to consolidate the existing knowledge of the interaction between HIV and cells that constitute the innate immune response.


Pathogenesis Innate cell-mediated immunity AIDS Cell dysfunction 



This work was supported by São Paulo Research Foundation (FAPESP, Grants #2011/12199-0; #2011/12512-0; #2011/24026-3; #2012/02799-3). The authors are grateful to Caroline Fontanari for her technical support and Dr. Karen Cavassani for her critical reading of the manuscript.

Author’s contribution

Frantz, FG conceived, wrote and revised the manuscript; Espíndola MS wrote a text and assembled the final manuscript and figure; Soares LS revised the final manuscript and wrote a text; Galva˜o-Lima LJ, Zambuzi FA, Cacemiro MC and Brauer VS wrote a text.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Shattock RJ, Moore JP. Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol. 2003;1(1):25–34.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science. 1999;286(5443):1353–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Wu L, KewalRamani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol. 2006;6(11):859–68.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279–90.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. 2000;100(5):587–97.PubMedCrossRefGoogle Scholar
  6. 6.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    van Furth R, Sluiter W. Distribution of blood monocytes between a marginating and a circulating pool. J Exp Med. 1986;163(2):474–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404.PubMedCrossRefGoogle Scholar
  11. 11.
    Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV infection. Immunity. 2013;39(4):633–45.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sonza S, Mutimer HP, Oelrichs R, Jardine D, Harvey K, Dunne A, et al. Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy. AIDS. 2001;15(1):17–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Hasegawa A, Liu H, Ling B, Borda JT, Alvarez X, Sugimoto C, et al. The level of monocyte turnover predicts disease progression in the macaque model of AIDS. Blood. 2009;114(14):2917–25.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Ann Rev Neurosci. 2002;25:537–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, et al. Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog. 2010;6(4):e1000842.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N. CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol. 1995;25(12):3418–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Ziegler-Heitbrock HW, Fingerle G, Strobel M, Schraut W, Stelter F, Schutt C, et al. The novel subset of CD14 +/CD16 + blood monocytes exhibits features of tissue macrophages. Eur J Immunol. 1993;23(9):2053–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Almeida J, Bueno C, Alguero MC, Sanchez ML, de Santiago M, Escribano L, et al. Comparative analysis of the morphological, cytochemical, immunophenotypical, and functional characteristics of normal human peripheral blood lineage(−)/CD16(+)/HLA-DR(+)/CD14(−/lo) cells, CD14(+) monocytes, and CD16(−) dendritic cells. Clin Immunol. 2001;100(3):325–38.PubMedCrossRefGoogle Scholar
  19. 19.
    de Baey A, Mende I, Riethmueller G, Baeuerle PA. Phenotype and function of human dendritic cells derived from M-DC8(+) monocytes. Eur J Immunol. 2001;31(6):1646–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Sanchez-Torres C, Garcia-Romo GS, Cornejo-Cortes MA, Rivas-Carvalho A, Sanchez-Schmitz G. CD16+ and CD16 human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells. Int Immunol. 2001;13(12):1571–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Siedlar M, Frankenberger M, Ziegler-Heitbrock LH, Belge KU. The M-DC8-positive leukocytes are a subpopulation of the CD14+ CD16+ monocytes. Immunobiology. 2000;202(1):11–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, et al. The CD16 + monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol. 2007;178(10):6581–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Ansari AW, Meyer-Olson D, Schmidt RE. Selective expansion of pro-inflammatory chemokine CCL2-loaded CD14+CD16+ monocytes subset in HIV-infected therapy naive individuals. J Clin Immunol. 2013;33(1):302–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Burdo TH, Lentz MR, Autissier P, Krishnan A, Halpern E, Letendre S, et al. Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis. 2011;204(1):154–63.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wilson EM, Singh A, Hullsiek KH, Gibson D, Henry WK, Lichtenstein K, et al. Monocyte activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210(9):1396–406.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Burdo TH, Lo J, Abbara S, Wei J, DeLelys ME, Preffer F, et al. Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients. J Infect Dis. 2011;204(8):1227–36.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kelesidis T, Kendall MA, Yang OO, Hodis HN, Currier JS. Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV-1 infection. J Infect Dis. 2012;206(10):1558–67.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis. 2011;203(6):780–90.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Tippett E, Cameron PU, Marsh M, Crowe SM. Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection. J Leukoc Biol. 2013;93(6):913–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Gekonge B, Giri MS, Kossenkov AV, Nebozyhn M, Yousef M, Mounzer K, et al. Constitutive gene expression in monocytes from chronic HIV-1 infection overlaps with acute Toll-like receptor induced monocyte activation profiles. PLoS ONE. 2012;7(7):e41153.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lester RT, Yao XD, Ball TB, McKinnon LR, Kaul R, Wachihi C, et al. Toll-like receptor expression and responsiveness are increased in viraemic HIV-1 infection. AIDS. 2008;22(6):685–94.PubMedCrossRefGoogle Scholar
  32. 32.
    Centlivre M, Legrand N, Steingrover R, van der Sluis R, Grijsen ML, Bakker M, et al. Altered dynamics and differential infection profiles of lymphoid and myeloid cell subsets during acute and chronic HIV-1 infection. J Leukoc Biol. 2011;89(5):785–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS. Unique monocyte subset in patients with AIDS dementia. Lancet. 1997;349(9053):692–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Simmons RP, Scully EP, Groden EE, Arnold KB, Chang JJ, Lane K, et al. HIV-1 infection induces strong production of IP-10 through TLR7/9-dependent pathways. AIDS. 2013;27(16):2505–17.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dutertre CA, Amraoui S, DeRosa A, Jourdain JP, Vimeux L, Goguet M, et al. Pivotal role of M-DC8(+) monocytes from viremic HIV-infected patients in TNFalpha overproduction in response to microbial products. Blood. 2012;120(11):2259–68.PubMedCrossRefGoogle Scholar
  36. 36.
    Manuzak JA, Dillon SM, Lee EJ, Dong ZM, Hecht DK, Wilson CC. Increased Escherichia coli-induced interleukin-23 production by CD16+ monocytes correlates with systemic immune activation in untreated HIV-1-infected individuals. J Virol. 2013;87(24):13252–62.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jiang W, Lederman MM, Salkowitz JR, Rodriguez B, Harding CV, Sieg SF. Impaired monocyte maturation in response to CpG oligodeoxynucleotide is related to viral RNA levels in human immunodeficiency virus disease and is at least partially mediated by deficiencies in alpha/beta interferon responsiveness and production. J Virol. 2005;79(7):4109–19.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Saez R, Echaniz P, de Juan MD, Iribarren JA, Cuadrado E. HIV-infected progressors and long-term non-progressors differ in their capacity to respond to an A-class CpG oligodeoxynucleotide. AIDS. 2005;19(16):1924–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Baqui AA, Meiller TF, Zhang M, Falkler WA Jr. The effects of HIV viral load on the phagocytic activity of monocytes activated with lipopolysaccharide from oral microorganisms. Immunopharmacol Immunotoxicol. 1999;21(3):421–38.PubMedCrossRefGoogle Scholar
  40. 40.
    Bravo-Cuellar A, Nowacki W, Vuillier F, de Saint-Martin J, Orbach-Arbouys S. The bactericidal capacity of peripheral blood monocytes from HIV positive patients may collapse very soon after the infection. Immunol Lett. 1992;31(3):297–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Cameron ML, Granger DL, Matthews TJ, Weinberg JB. Human immunodeficiency virus (HIV)-infected human blood monocytes and peritoneal macrophages have reduced anticryptococcal activity whereas HIV-infected alveolar macrophages retain normal activity. J Infect Dis. 1994;170(1):60–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Delemarre FG, Stevenhagen A, Kroon FP, van Eer MY, Meenhorst PL, van Furth R. Reduced toxoplasmastatic activity of monocytes and monocyte-derived macrophages from AIDS patients is mediated via prostaglandin E2. AIDS. 1995;9(5):441–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Dobmeyer TS, Raffel B, Dobmeyer JM, Findhammer S, Klein SA, Kabelitz D, et al. Decreased function of monocytes and granulocytes during HIV-1 infection correlates with CD4 cell counts. Eur J Med Res. 1995;1(1):9–15.PubMedGoogle Scholar
  44. 44.
    Estevez ME, Ballart IJ, Diez RA, Planes N, Scaglione C, Sen L. Early defect of phagocytic cell function in subjects at risk for acquired immunodeficiency syndrome. Scand J Immunol. 1986;24(2):215–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Kedzierska K, Azzam R, Ellery P, Mak J, Jaworowski A, Crowe SM. Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. J Clin Virol. 2003;26(2):247–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Ludlow LE, Zhou J, Tippett E, Cheng WJ, Hasang W, Rogerson SJ, et al. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes. PLoS ONE. 2012;7(2):e32102.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Michailidis C, Giannopoulos G, Vigklis V, Armenis K, Tsakris A, Gargalianos P. Impaired phagocytosis among patients infected by the human immunodeficiency virus: implication for a role of highly active anti-retroviral therapy. Clin Exp Immunol. 2012;167(3):499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pos O, Stevenhagen A, Meenhorst PL, Kroon FP, Van Furth R. Impaired phagocytosis of Staphylococcus aureus by granulocytes and monocytes of AIDS patients. Clin Exp Immunol. 1992;88(1):23–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001;106(3):255–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Klagge IM, Schneider-Schaulies S. Virus interactions with dendritic cells. J Gen Virol. 1999;80(Pt 4):823–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Hu J, Pope M, Brown C, O’Doherty U, Miller CJ. Immunophenotypic characterization of simian immunodeficiency virus-infected dendritic cells in cervix, vagina, and draining lymph nodes of rhesus monkeys. Lab Investig J Tech Methods Pathol. 1998;78(4):435–51.Google Scholar
  52. 52.
    Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, Melroe H, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science. 1996;274(5289):985–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Smith BA, Gartner S, Liu Y, Perelson AS, Stilianakis NI, Keele BF, et al. Persistence of infectious HIV on follicular dendritic cells. J Immunol. 2001;166(1):690–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Spiegel H, Herbst H, Niedobitek G, Foss HD, Stein H. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. Am J Pathol. 1992;140(1):15–22.PubMedPubMedCentralGoogle Scholar
  55. 55.
    van Nierop K, de Groot C. Human follicular dendritic cells: function, origin and development. Semin Immunol. 2002;14(4):251–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Cameron PU, Handley AJ, Baylis DC, Solomon AE, Bernard N, Purcell DF, et al. Preferential infection of dendritic cells during human immunodeficiency virus type 1 infection of blood leukocytes. J Virol. 2007;81(5):2297–306.PubMedCrossRefGoogle Scholar
  57. 57.
    Masurier C, Salomon B, Guettari N, Pioche C, Lachapelle F, Guigon M, et al. Dendritic cells route human immunodeficiency virus to lymph nodes after vaginal or intravenous administration to mice. J Virol. 1998;72(10):7822–9.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Barratt-Boyes SM, Zimmer MI, Harshyne L. Changes in dendritic cell migration and activation during SIV infection suggest a role in initial viral spread and eventual immunosuppression. J Med Primatol. 2002;31(4–5):186–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Chen JJ, Huang JC, Shirtliff M, Briscoe E, Ali S, Cesani F, et al. CD4 lymphocytes in the blood of HIV(+) individuals migrate rapidly to lymph nodes and bone marrow: support for homing theory of CD4 cell depletion. J Leukoc Biol. 2002;72(2):271–8.PubMedGoogle Scholar
  60. 60.
    Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, et al. HIV-infected T cells are migratory vehicles for viral dissemination. Nature. 2012;490(7419):283–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Negre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, Leissner P, et al. Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 2000;7(19):1613–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature. 2010;467(7312):214–7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Luban J. Innate immune sensing of HIV-1 by dendritic cells. Cell Host Microbe. 2012;12(4):408–18.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, Doms RW, et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol. 2002;3(10):975–83.PubMedCrossRefGoogle Scholar
  65. 65.
    Fantuzzi L, Purificato C, Donato K, Belardelli F, Gessani S. Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis. J Virol. 2004;78(18):9763–72.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cameron PU, Forsum U, Teppler H, Granelli-Piperno A, Steinman RM. During HIV-1 infection most blood dendritic cells are not productively infected and can induce allogeneic CD4+ T cells clonal expansion. Clin Exp Immunol. 1992;88(2):226–36.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Donaghy H, Gazzard B, Gotch F, Patterson S. Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood. 2003;101(11):4505–11.PubMedCrossRefGoogle Scholar
  68. 68.
    Macatonia SE, Patterson S, Knight SC. Suppression of immune responses by dendritic cells infected with HIV. Immunology. 1989;67(3):285–9.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol. 2014;35(3):114–22.PubMedCrossRefGoogle Scholar
  70. 70.
    Roberts M, Gompels M, Pinching AJ, Knight SC. Dendritic cells from HIV-1 infected individuals show reduced capacity to stimulate autologous T-cell proliferation. Immunol Lett. 1994;43(1–2):39–43.PubMedCrossRefGoogle Scholar
  71. 71.
    Macatonia SE, Lau R, Patterson S, Pinching AJ, Knight SC. Dendritic cell infection, depletion and dysfunction in HIV-infected individuals. Immunology. 1990;71(1):38–45.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, Goujard C, et al. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood. 2001;98(10):3016–21.PubMedCrossRefGoogle Scholar
  73. 73.
    Sabado RL, O’Brien M, Subedi A, Qin L, Hu N, Taylor E, et al. Evidence of dysregulation of dendritic cells in primary HIV infection. Blood. 2010;116(19):3839–52.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Behbahani H, Landay A, Patterson BK, Jones P, Pottage J, Agnoli M, et al. Normalization of immune activation in lymphoid tissue following highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2000;25(2):150–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Martin-Gayo E, Buzon MJ, Ouyang Z, Hickman T, Cronin J, Pimenova D, et al. Potent cell-intrinsic immune responses in dendritic cells facilitate HIV-1-specific T cell immunity in HIV-1 elite controllers. PLoS Pathog. 2015;11(6):e1004930.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Loffredo JT, Friedrich TC, Leon EJ, Stephany JJ, Rodrigues DS, Spencer SP, et al. CD8+ T cells from SIV elite controller macaques recognize Mamu-B*08-bound epitopes and select for widespread viral variation. PLoS ONE. 2007;2(11):e1152.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Walker BD, Yu XG. Unravelling the mechanisms of durable control of HIV-1. Nat Rev Immunol. 2013;13(7):487–98.PubMedCrossRefGoogle Scholar
  78. 78.
    Martinson JA, Roman-Gonzalez A, Tenorio AR, Montoya CJ, Gichinga CN, Rugeles MT, et al. Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell Immunol. 2007;250(1–2):75–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Miller EA, Spadaccia MR, O’Brien MP, Rolnitzky L, Sabado R, Manches O, et al. Plasma factors during chronic HIV-1 infection impair IL-12 secretion by myeloid dendritic cells via a virus-independent pathway. J Acquir Immune Defic Syndr. 2012;61(5):535–44.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Miller E, Bhardwaj N. Dendritic cell dysregulation during HIV-1 infection. Immunol Rev. 2013;254(1):170–89.PubMedCrossRefGoogle Scholar
  81. 81.
    Ito T, Kanzler H, Duramad O, Cao W, Liu YJ. Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells. Blood. 2006;107(6):2423–31.PubMedCrossRefGoogle Scholar
  82. 82.
    O’Brien M, Manches O, Sabado RL, Baranda SJ, Wang Y, Marie I, et al. Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype. J Clin Investig. 2011;121(3):1088–101.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Williams MA, Trout R, Spector SA. HIV-1 gp120 modulates the immunological function and expression of accessory and co-stimulatory molecules of monocyte-derived dendritic cells. J Hematother Stem Cell Res. 2002;11(5):829–47.PubMedCrossRefGoogle Scholar
  84. 84.
    Kawamura T, Gatanaga H, Borris DL, Connors M, Mitsuya H, Blauvelt A. Decreased stimulation of CD4+ T cell proliferation and IL-2 production by highly enriched populations of HIV-infected dendritic cells. J Immunol. 2003;170(8):4260–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Smed-Sorensen A, Lore K, Walther-Jallow L, Andersson J, Spetz AL. HIV-1-infected dendritic cells up-regulate cell surface markers but fail to produce IL-12 p70 in response to CD40 ligand stimulation. Blood. 2004;104(9):2810–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Garcia F, Routy JP. Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection Workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine. 2011;29(38):6454–63.PubMedCrossRefGoogle Scholar
  87. 87.
    Lakschevitz FS, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342(2):200–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562–73.PubMedCrossRefGoogle Scholar
  89. 89.
    Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Ann Rev Pathol. 2014;9:181–218.CrossRefGoogle Scholar
  90. 90.
    Donahue RE, Johnson MM, Zon LI, Clark SC, Groopman JE. Suppression of in vitro haematopoiesis following human immunodeficiency virus infection. Nature. 1987;326(6109):200–3.PubMedCrossRefGoogle Scholar
  91. 91.
    Pitrak DL, Tsai HC, Mullane KM, Sutton SH, Stevens P. Accelerated neutrophil apoptosis in the acquired immunodeficiency syndrome. J Clin Investig. 1996;98(12):2714–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kuritzkes DR. Neutropenia, neutrophil dysfunction, and bacterial infection in patients with human immunodeficiency virus disease: the role of granulocyte colony-stimulating factor. Clin Infect Dis. 2000;30(2):256–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Olinger GG, Saifuddin M, Spear GT. CD4-Negative cells bind human immunodeficiency virus type 1 and efficiently transfer virus to T cells. J Virol. 2000;74(18):8550–7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Biswas P, Mantelli B, Sica A, Malnati M, Panzeri C, Saccani A, et al. Expression of CD4 on human peripheral blood neutrophils. Blood. 2003;101(11):4452–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Gabali AM, Anzinger JJ, Spear GT, Thomas LL. Activation by inflammatory stimuli increases neutrophil binding of human immunodeficiency virus type 1 and subsequent infection of lymphocytes. J Virol. 2004;78(19):10833–6.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Elbim C, Prevot MH, Bouscarat F, Franzini E, Chollet-Martin S, Hakim J, et al. Polymorphonuclear neutrophils from human immunodeficiency virus-infected patients show enhanced activation, diminished fMLP-induced L-selectin shedding, and an impaired oxidative burst after cytokine priming. Blood. 1994;84(8):2759–66.PubMedGoogle Scholar
  97. 97.
    Gasperini S, Zambello R, Agostini C, Trentin L, Tassinari C, Cadrobbi P, et al. Impaired cytokine production by neutrophils isolated from patients with AIDS. Aids. 1998;12(4):373–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Heit B, Jones G, Knight D, Antony JM, Gill MJ, Brown C, et al. HIV and other lentiviral infections cause defects in neutrophil chemotaxis, recruitment, and cell structure: immunorestorative effects of granulocyte-macrophage colony-stimulating factor. J Immunol. 2006;177(9):6405–14.PubMedCrossRefGoogle Scholar
  99. 99.
    Kubes P, Heit B, van Marle G, Johnston JB, Knight D, Khan A, et al. In vivo impairment of neutrophil recruitment during lentivirus infection. J Immunol. 2003;171(9):4801–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Roilides E, Mertins S, Eddy J, Walsh TJ, Pizzo PA, Rubin M. Impairment of neutrophil chemotactic and bactericidal function in children infected with human immunodeficiency virus type 1 and partial reversal after in vitro exposure to granulocyte-macrophage colony-stimulating factor. J Pediatr. 1990;117(4):531–40.PubMedCrossRefGoogle Scholar
  101. 101.
    Coffey MJ, Phare SM, George S, Peters-Golden M, Kazanjian PH. Granulocyte colony-stimulating factor administration to HIV-infected subjects augments reduced leukotriene synthesis and anticryptococcal activity in neutrophils. J Clin Investig. 1998;102(4):663–70.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Pugliese A, Vidotto V, Beltramo T, Torre D. Phagocytic activity in human immunodeficiency virus type 1 infection. Clin Diagn Lab Immunol. 2005;12(8):889–95.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Engelich G, Wright DG, Hartshorn KL. Acquired disorders of phagocyte function complicating medical and surgical illnesses. Clin Infect Dis. 2001;33(12):2040–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Pitrak DL. Neutrophil deficiency and dysfunction in HIV-infected patients. Am J Health Syst Pharm. 1999;56(Suppl 5):S9–16.PubMedGoogle Scholar
  105. 105.
    Elbim C, Pillet S, Prevost MH, Preira A, Girard PM, Rogine N, et al. The role of phagocytes in HIV-related oxidative stress. J Clin Virol. 2001;20(3):99–109.PubMedCrossRefGoogle Scholar
  106. 106.
    Salmen S, Montilla D, London M, Velazquez D, Berrueta L. Analysis of p22-phox and p47-phox subcellular localization and distribution in neutrophils from human immunodeficiency virus (HIV) infected patients. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion. 2012;64(1):40–51.PubMedGoogle Scholar
  107. 107.
    Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12(1):109–16.PubMedCrossRefGoogle Scholar
  108. 108.
    Cloke T, Munder M, Bergin P, Herath S, Modolell M, Taylor G, et al. Phenotypic alteration of neutrophils in the blood of HIV seropositive patients. PLoS ONE. 2013;8(9):e72034.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bowers NL, Helton ES, Huijbregts RP, Goepfert PA, Heath SL, Hel Z. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog. 2014;10(3):e1003993.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Rothenberg ME, Pomerantz JL, Owen WF Jr, Avraham S, Soberman RJ, Austen KF, et al. Characterization of a human eosinophil proteoglycan, and augmentation of its biosynthesis and size by interleukin 3, interleukin 5, and granulocyte/macrophage colony stimulating factor. J Biol Chem. 1988;263(27):13901–8.PubMedGoogle Scholar
  111. 111.
    Greer JP. In: Greer JP, Arber DA, Glader B, List AF, Means Jr RT, Paraskevas F, et al., editors. Wintrobe's clinical hematology. 13th ed. Philadelphia: Wolters Kluwer Lippincott Williams & Wilkins Health; 2014. p. 2278.Google Scholar
  112. 112.
    Cohen AJ, Steigbigel RT. Eosinophilia in patients infected with human immunodeficiency virus. J Infect Dis. 1996;174(3):615–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Sivaram M, White A, Radcliffe KW. Eosinophilia: clinical significance in HIV-infected individuals. Int J STD AIDS. 2012;23(9):635–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Paboriboune P, Phoumindr N, Borel E, Sourinphoumy K, Phaxayaseng S, Luangkhot E, et al. Intestinal parasitic infections in HIV-infected patients, Lao People’s Democratic Republic. PLoS ONE. 2014;9(3):e91452.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Skiest DJ, Keiser P. Clinical significance of eosinophilia in HIV-infected individuals. Am J Med. 1997;102(5):449–53.PubMedCrossRefGoogle Scholar
  116. 116.
    Pavie J, Menotti J, Porcher R, Donay JL, Gallien S, Sarfati C, et al. Prevalence of opportunistic intestinal parasitic infections among HIV-infected patients with low CD4 cells counts in France in the combination antiretroviral therapy era. Int J Infect Dis. 2012;16(9):e677–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Lucey DR, Dorsky DI, Nicholson-Weller A, Weller PF. Human eosinophils express CD4 protein and bind human immunodeficiency virus 1 gp120. J Exp Med. 1989;169(1):327–32.PubMedCrossRefGoogle Scholar
  118. 118.
    Nagase H, Miyamasu M, Yamaguchi M, Fujisawa T, Ohta K, Yamamoto K, et al. Expression of CXCR4 in eosinophils: functional analyses and cytokine-mediated regulation. J Immunol. 2000;164(11):5935–43.PubMedCrossRefGoogle Scholar
  119. 119.
    Colebunders R, Van Den Eynde C, Tolo A, Fleerackers Y, Vanham G, Kestens L, et al. Eosinophilia in patients infected with human immunodeficiency virus. J Infect Dis. 1997;175(5):1283.PubMedCrossRefGoogle Scholar
  120. 120.
    St John AL, Abraham SN. Innate immunity and its regulation by mast cells. J Immunol. 2013;190(9):4458–63.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kawakami T, Galli SJ. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol. 2002;2(10):773–86.PubMedCrossRefGoogle Scholar
  122. 122.
    Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S73–80.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Israel-Biet D, Labrousse F, Tourani JM, Sors H, Andrieu JM, Even P. Elevation of IgE in HIV-infected subjects: a marker of poor prognosis. J Allergy Clin Immunol. 1992;89(1 Pt 1):68–75.PubMedCrossRefGoogle Scholar
  124. 124.
    Lucey DR, Zajac RA, Melcher GP, Butzin CA, Boswell RN. Serum IgE levels in 622 persons with human immunodeficiency virus infection: IgE elevation with marked depletion of CD4+ T-cells. AIDS Res Hum Retrovir. 1990;6(4):427–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Florio G, Petraroli A, Patella V, Triggiani M, Marone G. The immunoglobulin superantigen-binding site of HIV-1 gp120 activates human basophils. Aids. 2000;14(8):931–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Miadonna A, Leggieri E, Tedeschi A, Lazzarin A, Chianura L, Froldi M, et al. Enhanced basophil releasability in subjects infected with human immunodeficiency virus. Clin Immunol Immunopathol. 1990;54(2):237–46.PubMedCrossRefGoogle Scholar
  127. 127.
    Patella V, Florio G, Petraroli A, Marone G. HIV-1 gp120 induces IL-4 and IL-13 release from human Fc epsilon RI + cells through interaction with the VH3 region of IgE. J Immunol. 2000;164(2):589–95.PubMedCrossRefGoogle Scholar
  128. 128.
    Pedersen M, Nielsen CM, Permin H. HIV antigen-induced release of histamine from basophils from HIV infected patients. Mechanism and relation to disease progression and immunodeficiency. Allergy. 1991;46(3):206–12.PubMedCrossRefGoogle Scholar
  129. 129.
    Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, et al. HIV-1 Tat protein mimicry of chemokines. Proc Nat Acad Sci USA. 1998;95(22):13153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    de Paulis A, De Palma R, Di Gioia L, Carfora M, Prevete N, Tosi G, et al. Tat protein is an HIV-1-encoded beta-chemokine homolog that promotes migration and up-regulates CCR3 expression on human Fc epsilon RI+ cells. J Immunol. 2000;165(12):7171–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Coopman SA, Johnson RA, Platt R, Stern RS. Cutaneous disease and drug reactions in HIV infection. N Engl J Med. 1993;328(23):1670–4.PubMedCrossRefGoogle Scholar
  132. 132.
    Kaplan MH, Sadick N, McNutt NS, Meltzer M, Sarngadharan MG, Pahwa S. Dermatologic findings and manifestations of acquired immunodeficiency syndrome (AIDS). J Am Acad Dermatol. 1987;16(3 Pt 1):485–506.PubMedCrossRefGoogle Scholar
  133. 133.
    Klein SA, Dobmeyer JM, Dobmeyer TS, Pape M, Ottmann OG, Helm EB, et al. Demonstration of the Th1 to Th2 cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on single cell level by flow cytometry. AIDS. 1997;11(9):1111–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Maggi E, Mazzetti M, Ravina A, Annunziato F, de Carli M, Piccinni MP, et al. Ability of HIV to promote a TH1 to TH0 shift and to replicate preferentially in TH2 and TH0 cells. Science. 1994;265(5169):244–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Bannert N, Farzan M, Friend DS, Ochi H, Price KS, Sodroski J, et al. Human Mast cell progenitors can be infected by macrophagetropic human immunodeficiency virus type 1 and retain virus with maturation in vitro. J Virol. 2001;75(22):10808–14.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Li Y, Li L, Wadley R, Reddel SW, Qi JC, Archis C, et al. Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4. Blood. 2001;97(11):3484–90.PubMedCrossRefGoogle Scholar
  137. 137.
    Sundstrom JB, Ellis JE, Hair GA, Kirshenbaum AS, Metcalfe DD, Yi H, et al. Human tissue mast cells are an inducible reservoir of persistent HIV infection. Blood. 2007;109(12):5293–300.PubMedCrossRefGoogle Scholar
  138. 138.
    Sundstrom JB, Hair GA, Ansari AA, Secor WE, Gilfillan AM, Metcalfe DD, et al. IgE-FcepsilonRI interactions determine HIV coreceptor usage and susceptibility to infection during ontogeny of mast cells. J Immunol. 2009;182(10):6401–9.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    McNamara LA, Collins KL. Hematopoietic stem/precursor cells as HIV reservoirs. Curr Opin HIV AIDS. 2011;6(1):43–8.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Nelson AM, Auerbach A, Man YG. Failure to detect active virus replication in mast cells at various tissue sites of HIV patients by immunohistochemistry. Int J Biol Sci. 2009;5(6):603–10.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Jiang AP, Jiang JF, Wei JF, Guo MG, Qin Y, Guo QQ, et al. Human mucosal mast cells capture HIV-1 and mediate viral trans-infection of CD4+ T cells. J Virol. 2015;90(6):2928–37.PubMedCrossRefGoogle Scholar
  142. 142.
    Jiang AP, Jiang JF, Guo MG, Jin YM, Li YY, Wang JH. Human blood-circulating basophils capture HIV-1 and mediate viral trans-infection of CD4 + T cells. J Virol. 2015;89(15):8050–62.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Iwasaki H, Akashi K. Hematopoietic developmental pathways: on cellular basis. Oncogene. 2007;26(47):6687–96.PubMedCrossRefGoogle Scholar
  144. 144.
    Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol. 2013;13(11):777–89.PubMedCrossRefGoogle Scholar
  145. 145.
    Eberl G, Di Santo JP, Vivier E. The brave new world of innate lymphoid cells. Nat Immunol. 2015;16(1):1–5.PubMedCrossRefGoogle Scholar
  146. 146.
    Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Vivier E, van de Pavert SA, Cooper MD, Belz GT. The evolution of innate lymphoid cells. Nat Immunol. 2016;17(7):790–4.PubMedCrossRefGoogle Scholar
  148. 148.
    Kloverpris HN, Kazer SW, Mjosberg J, Mabuka JM, Wellmann A, Ndhlovu Z, et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity. 2016;44(2):391–405.PubMedCrossRefGoogle Scholar
  149. 149.
    Altfeld M, Fadda L, Frleta D, Bhardwaj N. DCs and NK cells: critical effectors in the immune response to HIV-1. Nat Rev Immunol. 2011;11(3):176–86.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–9.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ, Waring MT, et al. Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood. 2005;106(10):3366–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Kuri-Cervantes L, de Oca GS, Avila-Rios S, Hernandez-Juan R, Reyes-Teran G. Activation of NK cells is associated with HIV-1 disease progression. J Leukoc Biol. 2014;96(1):7–16.PubMedCrossRefGoogle Scholar
  153. 153.
    Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.PubMedCrossRefGoogle Scholar
  154. 154.
    Hu PF, Hultin LE, Hultin P, Hausner MA, Hirji K, Jewett A, et al. Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56- cells with low lytic activity. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;10(3):331–40.PubMedGoogle Scholar
  155. 155.
    Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E, et al. Characterization of CD56/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci USA. 2005;102(8):2886–91.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Vieillard V, Fausther-Bovendo H, Samri A, Debre P. French asymptomatiques a long terme A-COSG. Specific phenotypic and functional features of natural killer cells from HIV-infected long-term nonprogressors and HIV controllers. J Acquir Immune Defic Syndr. 2010;53(5):564–73.PubMedGoogle Scholar
  157. 157.
    Bernstein HB, Wang G, Plasterer MC, Zack JA, Ramasastry P, Mumenthaler SM, et al. CD4 + NK cells can be productively infected with HIV, leading to downregulation of CD4 expression and changes in function. Virology. 2009;387(1):59–66.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Mavilio D, Benjamin J, Daucher M, Lombardo G, Kottilil S, Planta MA, et al. Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates. Proc Nat Acad Sci USA. 2003;100(25):15011–6.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Lichtfuss GF, Cheng WJ, Farsakoglu Y, Paukovics G, Rajasuriar R, Velayudham P, et al. Virologically suppressed HIV patients show activation of NK cells and persistent innate immune activation. J Immunol. 2012;189(3):1491–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Brockman MA, Kwon DS, Tighe DP, Pavlik DF, Rosato PC, Sela J, et al. IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. Blood. 2009;114(2):346–56.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Parato KG, Kumar A, Badley AD, Sanchez-Dardon JL, Chambers KA, Young CD, et al. Normalization of natural killer cell function and phenotype with effective anti-HIV therapy and the role of IL-10. AIDS. 2002;16(9):1251–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Scott-Algara D, Truong LX, Versmisse P, David A, Luong TT, Nguyen NV, et al. Cutting edge: increased NK cell activity in HIV-1-exposed but uninfected Vietnamese intravascular drug users. J Immunol. 2003;171(11):5663–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Vieillard V, Strominger JL, Debre P. NK cytotoxicity against CD4 + T cells during HIV-1 infection: a gp41 peptide induces the expression of an NKp44 ligand. Proc Nat Acad Sci USA. 2005;102(31):10981–6.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Ward J, Bonaparte M, Sacks J, Guterman J, Fogli M, Mavilio D, et al. HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood. 2007;110(4):1207–14.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet. 2002;31(4):429–34.PubMedGoogle Scholar
  166. 166.
    Kramski M, Stratov I, Kent SJ. The role of HIV-specific antibody-dependent cellular cytotoxicity in HIV prevention and the influence of the HIV-1 Vpu protein. AIDS. 2015;29(2):137–44.PubMedCrossRefGoogle Scholar
  167. 167.
    Lambotte O, Ferrari G, Moog C, Yates NL, Liao HX, Parks RJ, et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. AIDS. 2009;23(8):897–906.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Sun JC, Ugolini S, Vivier E. Immunological memory within the innate immune system. EMBO J. 2014;33(12):1295–303.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Ann Rev Immunol. 2007;25:297–336.CrossRefGoogle Scholar
  170. 170.
    Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol. 2009;86(3):513–28.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Motsinger A, Haas DW, Stanic AK, Van Kaer L, Joyce S, Unutmaz D. CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med. 2002;195(7):869–79.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Fernandez CS, Kelleher AD, Finlayson R, Godfrey DI, Kent SJ. NKT cell depletion in humans during early HIV infection. Immunol Cell Biol. 2014;92(7):578–90.PubMedCrossRefGoogle Scholar
  173. 173.
    Sandberg JK, Fast NM, Palacios EH, Fennelly G, Dobroszycki J, Palumbo P, et al. Selective loss of innate CD4(+) V alpha 24 natural killer T cells in human immunodeficiency virus infection. J Virol. 2002;76(15):7528–34.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Li D, Xu XN. NKT cells in HIV-1 infection. Cell Res. 2008;18(8):817–22.PubMedCrossRefGoogle Scholar
  175. 175.
    Yang OO, Wilson SB, Hultin LE, Detels R, Hultin PM, Ibarrondo FJ, et al. Delayed reconstitution of CD4 + iNKT cells after effective HIV type 1 therapy. AIDS Res Hum Retrovir. 2007;23(7):913–22.PubMedCrossRefGoogle Scholar
  176. 176.
    Unutmaz D. NKT cells and HIV infection. Microbes and infection/Institut Pasteur. 2003;5(11):1041–7.CrossRefGoogle Scholar
  177. 177.
    Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013;13(2):88–100.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Poccia F, Gougeon ML, Bonneville M, Lopez-Botet M, Moretta A, Battistini L, et al. Innate T-cell immunity to nonpeptidic antigens. Immunol Today. 1998;19(6):253–6.PubMedCrossRefGoogle Scholar
  179. 179.
    Poccia F, Wallace M, Colizzi V, Malkovsky M. Possible protective and pathogenic roles of gamma delta T lymphocytes in HIV-infections (Review). Int J Mol Med. 1998;1(2):409–13.PubMedGoogle Scholar
  180. 180.
    Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med. 2003;197(2):163–8.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity. 2009;31(2):184–96.PubMedCrossRefGoogle Scholar
  182. 182.
    Poccia F, Boullier S, Lecoeur H, Cochet M, Poquet Y, Colizzi V, et al. Peripheral V gamma 9/V delta 2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. J Immunol. 1996;157(1):449–61.PubMedGoogle Scholar
  183. 183.
    Autran B, Triebel F, Katlama C, Rozenbaum W, Hercend T, Debre P. T cell receptor gamma/delta + lymphocyte subsets during HIV infection. Clin Exp Immunol. 1989;75(2):206–10.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Chia WK, Freedman J, Li X, Salit I, Kardish M, Read SE. Programmed cell death induced by HIV type 1 antigen stimulation is associated with a decrease in cytotoxic T lymphocyte activity in advanced HIV type 1 infection. AIDS Res Hum Retrovir. 1995;11(2):249–56.PubMedCrossRefGoogle Scholar
  185. 185.
    Li H, Pauza CD. HIV envelope-mediated, CCR5/alpha4beta7-dependent killing of CD4-negative gammadelta T cells which are lost during progression to AIDS. Blood. 2011;118(22):5824–31.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Li H, Peng H, Ma P, Ruan Y, Su B, Ding X, et al. Association between Vgamma2Vdelta2 T cells and disease progression after infection with closely related strains of HIV in China. Clin Infect Dis. 2008;46(9):1466–72.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Wallace M, Scharko AM, Pauza CD, Fisch P, Imaoka K, Kawabata S, et al. Functional gamma delta T-lymphocyte defect associated with human immunodeficiency virus infections. Mol Med. 1997;3(1):60–71.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Sacchi A, Tempestilli M, Turchi F, Agrati C, Casetti R, Cimini E, et al. CD3zeta down-modulation may explain Vgamma9Vdelta2 T lymphocyte anergy in HIV-infected patients. J Infect Dis. 2009;199(3):432–6.PubMedCrossRefGoogle Scholar
  189. 189.
    Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116(10):1726–33.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Brunetta E, Hudspeth KL, Mavilio D. Pathologic natural killer cell subset redistribution in HIV-1 infection: new insights in pathophysiology and clinical outcomes. J Leukoc Biol. 2010;88(6):1119–30.PubMedCrossRefGoogle Scholar
  191. 191.
    Li H, Chaudhry S, Poonia B, Shao Y, Pauza CD. Depletion and dysfunction of Vgamma2Vdelta2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cell Mol Immunol. 2013;10(1):42–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Martini F, Poccia F, Goletti D, Carrara S, Vincenti D, D’Offizi G, et al. Acute human immunodeficiency virus replication causes a rapid and persistent impairment of Vgamma9Vdelta2 T cells in chronically infected patients undergoing structured treatment interruption. J Infect Dis. 2002;186(6):847–50.PubMedCrossRefGoogle Scholar
  193. 193.
    Nilssen DE, Muller F, Oktedalen O, Froland SS, Fausa O, Halstensen TS, et al. Intraepithelial gamma/delta T cells in duodenal mucosa are related to the immune state and survival time in AIDS. J Virol. 1996;70(6):3545–50.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Espindola MS, Frantz FG, Soares LS, Masson AP, Tefe-Silva C, Bitencourt CS, et al. Combined immunization using DNA-Sm14 and DNA-Hsp65 increases CD8+ memory T cells, reduces chronic pathology and decreases egg viability during Schistosoma mansoni infection. BMC Infect Dis. 2014;14:263.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    CobosJimenez V, Wit FW, Joerink M, Maurer I, Harskamp AM, Schouten J, et al. T-cell activation independently associates with immune senescence in HIV-infected recipients of long-term antiretroviral treatment. J Infect Dis. 2016;214(2):216–25.CrossRefGoogle Scholar
  196. 196.
    Wada NI, Jacobson LP, Margolick JB, Breen EC, Macatangay B, Penugonda S, et al. The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation. AIDS. 2015;29(4):463–71.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–55.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Zapata HJ, Shaw AC. Aging of the human innate immune system in HIV infection. Curr Opin Immunol. 2014;29:127–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Milena S. Espíndola
    • 1
  • Luana S. Soares
    • 1
  • Leonardo J. Galvão-Lima
    • 1
  • Fabiana A. Zambuzi
    • 1
  • Maira C. Cacemiro
    • 1
  • Verônica S. Brauer
    • 1
  • Fabiani G. Frantz
    • 1
  1. 1.Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao PretoUniversidade de Sao PauloRibeirao PretoBrazil

Personalised recommendations