Immunologic Research

, Volume 65, Issue 1, pp 207–217 | Cite as

Glaucoma: recent advances in the involvement of autoimmunity

  • Maria Ida Rizzo
  • Antonio Greco
  • Armando De Virgilio
  • Andrea Gallo
  • Luciano Taverniti
  • Massimo Fusconi
  • Michela Conte
  • Giulio Pagliuca
  • Rosaria Turchetta
  • Marco de Vincentiis
Therapeutic Aspects in Autoimmunity

Abstract

Glaucomatous optic neuropathy is the most commonly acquired optic neuropathy encountered in clinical practice. It is the second leading cause of blindness globally, after cataracts, but it presents a greater public health challenge than cataracts, because the blindness it causes is irreversible. It has pathogenesis still largely unknown and no established cure. Alterations in serum antibody profiles, upregulation, and downregulation have been described, but it still remains elusive if the autoantibodies seen in glaucoma are an epiphenomenon or causative. Hypertension, diabetes, and hearing disorders also are associated. This review is a glaucoma update with focus about the recent advances in the last 15 years.

Keywords

Glaucoma Glaucomatous optic neuropathy Open-angle glaucoma Angle-closure glaucoma Normal-tension glaucoma Autoimmunity 

References

  1. 1.
    Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ. 2004;82:887–8.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Wax MB, Tezel G, Saito I, et al. Anti-Ro/SS-a positivity and heat shock protein antibodies in patients with normal-pressure glaucoma. Am J Ophthalmol. 1998;125:145–57.CrossRefPubMedGoogle Scholar
  3. 3.
    Grus FH, Gramlich OW. Autoimmunity and glaucoma. Klin Monbl Augenheilkd. 2011;228:439–45.CrossRefPubMedGoogle Scholar
  4. 4.
    Rieck J. The pathogenesis of glaucoma in the interplay with the immune system. Invest Ophthalmol Vis Sci. 2013;54:2393–409.CrossRefPubMedGoogle Scholar
  5. 5.
    Kremmer S, Kreuzfelder E, Bachor E, Jahnke K, Selbach JM, Seidahmadi S. Coincidence of normal tension glaucoma, progressive sensorineural hearing loss, and elevated antiphosphatidylserine antibodies. Br J Ophthalmol. 2004;88:1259–62.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kremmer S, Anastassiou G, Selbach JM. Hearing disorders with glaucoma. Klin Monbl Augenheilkd. 2014;231:144–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Quigley HA. Glaucoma. Lancet. 2011;377:1367–77.CrossRefPubMedGoogle Scholar
  8. 8.
    Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90.CrossRefPubMedGoogle Scholar
  9. 9.
    Javitt JC, McBean AM, Nicholson GA, Babish JD, Warren JL, Krakauer H. Undertreatment of glaucoma among black Americans. N Engl J Med. 1991;325:1418–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–51.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:714–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Aung T, Ocaka L, Ebenezer ND, et al. A major marker for normal tension glaucoma: association with polymorphisms in the OPA1 gene. Hum Genet. 2002;110:52–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Bonomi L, Marchini G, Marraffa M, et al. Prevalence of glaucoma and intraocular pressure distribution in a defined population: the Egna-Neumarkt study. Ophthalmology. 1998;105:209–15.CrossRefPubMedGoogle Scholar
  17. 17.
    Grus FH, Joachim SC, Pfeiffer N. Analysis of complex autoantibody repertoires by surface-enhanced laser desorption/ionization-time of flight mass spectrometry. Proteomics. 2003;3:957–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res. 2010;93:120–32.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ferrer E. Trabecular meshwork as a new target for the treatment of glaucoma. Drug News Perspect. 2006;19:151–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Henderson PA, Medeiros FA, Zangwill LM, Weinreb RN. Relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertensive patients. Ophthalmology. 2005;112:251–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Maruyama I, Ikeda Y, Nakazawa M, Ohguro H. Clinical roles of serum autoantibody against neuron-specific enolase in glaucoma patients. Tohoku J Exp Med. 2002;197:125–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Maruyama I, Ohguro H, Ikeda Y. Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found in glaucoma patients. Invest Ophthalmol Vis Sci. 2000;41:1657–65.PubMedGoogle Scholar
  23. 23.
    Nickells RW, Howell GR, Soto I, John SW. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci. 2012;35:153–79.CrossRefPubMedGoogle Scholar
  24. 24.
    Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Whitmore AV, Libby RT, John SWM. Glaucoma: thinking in new ways—a rôle for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res. 2005;24:639–62.CrossRefPubMedGoogle Scholar
  26. 26.
    Harrington DO. The Bjerrum scotoma. Trans Am Ophthalmol Soc. 1964;62:324–48.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bjerrum J. Om en tilføjelse til den sædvanlige synsfelt – undersögelse samt om synsfeltet ved glaukom. Nord ophthal Tidsskrift. 1889;2:141–85.Google Scholar
  28. 28.
    Nickells RW. Retinal ganglion cell death in glaucoma: the how, the why, and the maybe. J Glaucoma. 1996;5:345–56.CrossRefPubMedGoogle Scholar
  29. 29.
    Zur D, Ullman S. Filling-in of retinal scotomas. Vis Res. 2003;43:971–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000;41:764–74.PubMedGoogle Scholar
  31. 31.
    Agar A, Li S, Agarwal N, Coroneo MT, Hill MA. Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res. 2006;1086:191–200.CrossRefPubMedGoogle Scholar
  32. 32.
    Agar A, Yip SS, Hill MA, Coroneo MT. Pressure related apoptosis in neuronal cell lines. J Neurosci Res. 2000;60:495–503.CrossRefPubMedGoogle Scholar
  33. 33.
    Pfeiffer N. Results of the “Ocular Hypertension treatment study”. Ophthalmologe. 2005;102:230–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Nickells RW. The molecular biology of retinal ganglion cell death: caveats and controversies. Brain Res Bull. 2004;62:439–46.CrossRefPubMedGoogle Scholar
  35. 35.
    Li Y, Schlamp CL, Poulsen KP, Nickells RW. Bax-dependent and independent pathways of retinal ganglion cell death induced by different damaging stimuli. Exp Eye Res. 2000;71:209–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Li Y, Schlamp CL, Poulsen GL, Jackson MW, Griep AE, Nickells RW. p53 regulates apoptotic retinal ganglion cell death induced by N-methyl-d-aspartate. Mol Vis. 2002;8:341–50.PubMedGoogle Scholar
  37. 37.
    Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived Fas-ligand. J Neurosci. 2008;28:12085–96.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nickells RW. From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma. Can J Ophthalmol. 2007;42:278–87.CrossRefPubMedGoogle Scholar
  39. 39.
    Chidlow G, Wood JP, Casson RJ. Pharmacological neuroprotection for glaucoma. Drugs. 2007;67:725–59.CrossRefPubMedGoogle Scholar
  40. 40.
    Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am. 2005;18:383–95.CrossRefPubMedGoogle Scholar
  41. 41.
    Lipton SA. Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv Ophthalmol. 2003;48:S38–46.CrossRefPubMedGoogle Scholar
  42. 42.
    Schori H, Kipnis J, Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci USA. 2001;98:3398–403.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Vorwerk CK, Naskar R, Schuettauf F, et al. Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. Invest Ophthalmol Vis Sci. 2000;41:3615–21.PubMedGoogle Scholar
  44. 44.
    Honkanen RA, Baruah S, Zimmerman MB, et al. Vitreous amino acid concentrations in patients with glaucoma undergoing vitrectomy. Arch Ophthalmol. 2003;121:183–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Ullian EM, Barkis WB, Chen S, Diamond JS, Barres BA. Invulnerability of retinal ganglion cells to NMDA excitotoxicity. Mol Cell Neurosci. 2004;26:544–57.CrossRefPubMedGoogle Scholar
  46. 46.
    Russo R, Rotiroti D, Tassorelli C, et al. Identification of novel pharmacological targets to minimize excitotoxic retinal damage. Int Rev Neurobiol. 2009;85:407–23.CrossRefPubMedGoogle Scholar
  47. 47.
    Inoue-Matsuhisa E, Sogo S, Mizota A, Taniai M, Takenaka H, Mano T. Effect of MCI-9042, a 5-HT2 receptor antagonist, on retinal ganglion cell death and retinal ischemia. Exp Eye Res. 2003;76:445–52.CrossRefPubMedGoogle Scholar
  48. 48.
    Lingor P, Koeberle P, Kügler S, Bähr M. Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain. 2005;128:550–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Osborne NN, Lascaratos G, Bron AJ, Chidlow G, Wood JP. A hypothesis to suggest that light is a risk factor in glaucoma and the mitochondrial optic neuropathies. Br J Ophthalmol. 2006;90:237–41.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Aronica E, Gorter JA, Ijlst-Keizers H, et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci. 2003;17:2106–18.CrossRefPubMedGoogle Scholar
  51. 51.
    Naskar R, Vorwerk CK, Dreyer EB. Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci. 2000;41:1940–4.PubMedGoogle Scholar
  52. 52.
    Sofroniew M, Vinters H. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.CrossRefPubMedGoogle Scholar
  53. 53.
    Garrido C, Gurbuxani S, Ravagnan L, Kroemer G. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun. 2001;286:433–42.CrossRefPubMedGoogle Scholar
  54. 54.
    Wax MB, Yang J, Tezel G, Peng G, Patil RV, Calkins DJ. A model of experimental autoimmune glaucoma in rats elicited by immunization with heat shock protein27. Invest Ophthalmol Vis Sci 2002; 43 [E-abstract 2884].Google Scholar
  55. 55.
    Tezel G, Hernandez MR, Wax MB. Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Arch Ophthalmol. 2000;118:511–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Joachim SC, Pfeiffer N, Grus FH. Autoantibodies in patients with glaucoma: a comparison of IgG serum antibodies against retinal, optic nerve, and optic nerve head antigens. Graefes Arch Clin Exp Ophthalmol. 2005;243:817–23.CrossRefPubMedGoogle Scholar
  57. 57.
    Grus FH, Joachim SC, Hoffmann EM, Pfeiffer N. Complex autoantibody repertoires in patients with glaucoma. Mol Vis. 2004;10:132–7.PubMedGoogle Scholar
  58. 58.
    Grus FH, Joachim SC, Bruns K, Lackner KJ, Pfeiffer N, Wax MB. Serum autoantibodies to alpha-fodrin are present in glaucoma patients from Germany and the United States. Invest Ophthalmol Vis Sci. 2006;47:968–76.CrossRefPubMedGoogle Scholar
  59. 59.
    Yang J, Tezel G, Patil RV, Romano C, Wax MB. Serum autoantibody against glutathione S-transferase in patients with glaucoma. Invest Ophthalmol Vis Sci. 2001;42:1273–6.PubMedGoogle Scholar
  60. 60.
    Yano T, Yamada K, Kimura A, et al. Autoimmunity against neurofilament protein and its possible association with HLA-DRB1*1502 allele in glaucoma. Immunol Lett. 2005;100:164–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Grus FH, Joachim SC, Wuenschig D, Rieck J, Pfeiffer N. Autoimmunity and glaucoma. J Glaucoma. 2008;17:79–84.CrossRefPubMedGoogle Scholar
  62. 62.
    Yan X, Tezel G, Wax MB, Edward DP. Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol. 2000;118:666–73.CrossRefPubMedGoogle Scholar
  63. 63.
    Tezel G. TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res. 2008;173:409–21.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yuan L, Neufeld AH. Tumor necrosis factor-α: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia. 2000;32:42–50.CrossRefPubMedGoogle Scholar
  65. 65.
    Luo C, Yang X, Powell DW, Klein JB, Tezel G. Stress proteins and immunostimulatory signaling through toll-like receptors in glaucoma. Invest Ophthalmol Vis Sci 2009; 50 [E-abstract 4048].Google Scholar
  66. 66.
    Young DB. Heat-shock proteins: immunity and autoimmunity. Curr Opin Immunol. 1992;4:396–400.CrossRefPubMedGoogle Scholar
  67. 67.
    Oldstone MB. Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr Top Microbiol Immunol. 2005;296:1–17.PubMedGoogle Scholar
  68. 68.
    Galloway PH, Warner SJ, Morshed MG, Mikelberg FS. Helicobacter pylori infection and the risk for open-angle glaucoma. Ophthalmology. 2003;110:922–5.CrossRefPubMedGoogle Scholar
  69. 69.
    Kountouras J, Zavos C, Chatzopoulos D. Induction of apoptosis as a proposed pathophysiological link between glaucoma and Helicobacter pylori infection. Med Hypoth. 2004;62:378–81.CrossRefGoogle Scholar
  70. 70.
    Kim JM, Kim SH, Park KH, Han SY, Shim HS. Investigation of the association between Helicobacter pylori infection and normal tension glaucoma. Invest Ophthalmol Vis Sci. 2011;52:665–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Shokoohi KK, Shin DH, Elliott D, et al. Antiphospholipid antibodies in patients with normal tension glaucoma. Invest Ophthalmol Vis Sci. 1999;40(Suppl):342.Google Scholar
  72. 72.
    Kremmer S, Kreuzfelder E, Klein R, Bontke N, Henneberg-Quester KB, Steuhl KP, Grosse-Wilde H. Antiphosphatidylserine antibodies are elevated in normal tension glaucoma. Clin Exp Immunol. 2001;125:211–5.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bachor E, Kremmer S, Kreuzfelder E, Jahnke K, Seidahmadi S. Antiphospholipid antibodies in patients with sensorineural hearing loss. Eur Arch Otorhinolaryngol. 2005;262:622–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Shazly TA, Aljajeh M, Latina MA. Autoimmune basis of glaucoma. Semin Ophthalmol. 2011;26:278–81.CrossRefPubMedGoogle Scholar
  75. 75.
    Gloor BP, Sarra GM. Visusverlust und Sehstörung (2. Teil). Schweiz Med Forum. 2004;4:308–12.Google Scholar
  76. 76.
    Medeiros FA, Vizzeri G, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology. 2008;115:1340–6.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Chauhan BC, O’Leary N, Almobarak FA, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology. 2013;120:535–43.CrossRefPubMedGoogle Scholar
  78. 78.
    Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma. JAMA. 2014;311:1901–11.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Wax MB. The case for autoimmunity in glaucoma. Exp Eye Res. 2011;93:187–90.CrossRefPubMedGoogle Scholar
  80. 80.
    Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.CrossRefPubMedGoogle Scholar
  81. 81.
    O’Neill EC, Danesh-Meyer HV, Kong GX, et al. Optic disc evaluation in optic neuropathies: the optic disc assessment project. Ophthalmology. 2011;118:964–70.CrossRefPubMedGoogle Scholar
  82. 82.
    Hutchinson JK, et al. Optic neuropathies: glaucomatous vs. non-glaucomatous. 18th annual glaucoma report. Rev Optom. 2012;149:58.Google Scholar
  83. 83.
    Moster ML, Kay MD. Glaucoma: the neuro-ophthalmologic differential diagnosis. J Curr Glaucoma Pract. 2008;2:33–8.CrossRefGoogle Scholar
  84. 84.
    Trobe JD, Glaser JS, Cassady JC. Optic atrophy. Differential diagnosis by fundus observation alone. Arch Ophthalmol. 1980;98:1040–5.CrossRefPubMedGoogle Scholar
  85. 85.
    CNTGSG. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126:487–97.CrossRefGoogle Scholar
  86. 86.
    CNTGSG. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126:498–505.CrossRefGoogle Scholar
  87. 87.
    Wentz SM, Kim NJ, Wang J, Amireskandari A, Siesky B, Harris A. Novel therapies for open-angle glaucoma. F1000Prime Rep. 2014;6:102.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Coleman AL. Glaucoma. Lancet. 1999;354:1803–10.CrossRefPubMedGoogle Scholar
  89. 89.
    Mozaffarieh M, Flammer J. Is there more to glaucoma treatment than lowering IOP? Surv Ophthalmol. 2007;52:S174–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Mackenzie P, Cioffi G. How does lowering of intraocular pressure protect the optic nerve? Surv Ophthalmol. 2008;53:S39–43.CrossRefPubMedGoogle Scholar
  91. 91.
    Enyedi LB, Freedman SF. Safety and efficacy of brimonidine in children with glaucoma. J Pediatr Ophthalmol Strabismus. 2001;5:281–4.CrossRefGoogle Scholar
  92. 92.
    Schuettauf F, Quinto K, Naskar R, Zurakowski D. Effects of anti-glaucoma medications on ganglion cell survival: the DBA/2J mouse model. Vis Res. 2002;42:2333–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Pfeiffer N, Grierson I, Goldsmith H, Hochgesand D, Winkgen-Bohres A, Appleton P. Histological effects in the iris after 3 months of latanoprost therapy: the Mainz 1 Study. Arch Ophthalmol. 2001;119:191–6.PubMedGoogle Scholar
  94. 94.
    Kaufman PL. Marijuana and glaucoma. Arch Ophthalmol. 1998;116:1512–3.CrossRefPubMedGoogle Scholar
  95. 95.
    Nucci C, Bari M, Spano A, Corasaniti M, Bagetta G, Maccarrone M, Morrone LA. Potential roles of (endo)cannabinoids in the treatment of glaucoma: from intraocular pressure control to neuroprotection. Prog Brain Res. 2008;173:451–64.CrossRefPubMedGoogle Scholar
  96. 96.
    Hare W, WoldeMussie E, Lai R, Ton H, Ruiz G, Feldmann B, Wijono M, Chun T, Wheeler L. Efficacy and safety of memantine, an NMDA-type open-channel blocker, for reduction of retinal injury associated with experimental glaucoma in rat and monkey. Surv Ophthalmol. 2001;45:S284–9 (discussion S295–6).CrossRefPubMedGoogle Scholar
  97. 97.
    Pang IH, Johnson EC, Jia L, Cepurna WO, Shepard AR, Hellberg MR, Clark AF, Morrison JC. Evaluation of inducible nitric oxide synthase in glaucomatous optic neuropathy and pressure-induced optic nerve damage. Invest Ophthalmol Vis Sci. 2005;46:1313–21.CrossRefPubMedGoogle Scholar
  98. 98.
    Foxton RH, Finkelstein A, Vijay S, Dahlmann-Noor A, Khaw PT, Morgan JE, Shima DT, Ng YS. VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol. 2013;182:1379–90.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Kaufman PL, Rasmussen CA. Advances in glaucoma treatment and management: outflow drugs. Invest Ophthalmol Vis Sci. 2012;53:2495–500.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Bell K, Gramlich OW, Von Thun Und Hohenstein-Blaul N, Beck S, Funke S, Wilding C, Pfeiffer N, Grus FH. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retin Eye Res. 2013;36:199–216.CrossRefPubMedGoogle Scholar
  101. 101.
    Adatia FA, et al. Chronic open-angle glaucoma. Can Fam Physician. 2005;51(9):1229–37.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Read RW, et al. Nongranulomatous inflammation: uveitis, endophthalmitis, panophthalmitis, and sequelae. In: Tasman W, et al., editors. Duane’s clinical ophthalmology. Baltimore: Lippincott Williams & Wilkins; 2004.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maria Ida Rizzo
    • 1
    • 2
  • Antonio Greco
    • 2
  • Armando De Virgilio
    • 1
    • 2
  • Andrea Gallo
    • 3
  • Luciano Taverniti
    • 4
  • Massimo Fusconi
    • 1
  • Michela Conte
    • 1
  • Giulio Pagliuca
    • 3
  • Rosaria Turchetta
    • 1
  • Marco de Vincentiis
    • 1
  1. 1.ENT Section, Department Organs of SenseUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Department of Surgical ScienceUniversity of Rome “La Sapienza”RomeItaly
  3. 3.Otorhinolaryngology Section, Department of Medico-Surgical Sciences and Biotechnologies‘‘Sapienza’’ University of RomeLatinaItaly
  4. 4.Ophthalmology Section, Department Organs of SenseUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations