Immunologic Research

, Volume 65, Issue 1, pp 242–256 | Cite as

On the pathogenesis of insulin-dependent diabetes mellitus: the role of microbiota

Therapeutic Aspects in Autoimmunity

Abstract

Type 1 diabetes (T1D) is an autoimmune disorder characterized by the selective destruction of insulin-producing β cells as result of a complex interplay between genetic, stochastic and environmental factors in genetically susceptible individuals. An increasing amount of experimental data from animal models and humans has supported the role played by imbalanced gut microbiome in T1D pathogenesis. The commensal intestinal microbiota is fundamental for several physiologic mechanisms, including the establishment of immune homeostasis. Alterations in its composition have been correlated to changes in the gut immune system, including defective tolerance to food antigens, intestinal inflammation and enhanced gut permeability. Early findings reported differences in the intestinal microbiome of subjects affected by prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence microbiome composition and discusses their putative correlation with T1D development. Further studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced permeability and the autoimmune mechanisms responsible for T1D onset.

Keywords

Autoimmune disorders Etiopathogenesis Microbiome Environmental factors T1D Prevention treatment 

References

  1. 1.
    Silveira PA, Grey ST. B cells in the spotlight: innocent bystanders or major players in the pathogenesis of type 1 diabetes. Trends Endocrinol Metab. 2006;17:128–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fierabracci A. The potential of multimer technologies in type 1 diabetes prediction strategies. Diabetes Metab Res Rev. 2011;27:216–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Stechova K, Kolar M, Blatny R, Halbhuber Z, Vcelakova J, Hubackova M, et al. Healthy first degree relatives of patients with type 1 diabetes exhibit significant differences in basal gene expression pattern of immunocompetent cells compared to controls: expression pattern as predeterminant of autoimmune diabetes. Scand J Immunol. 2011;75:210–9.CrossRefGoogle Scholar
  5. 5.
    Jönsson L, Hallström I, Lundqvist A. “The logic of care”—parents’ perceptions of the educational process when a child is newly diagnosed with type 1 diabetes. BMC Pediatr. 2012;12:165.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Alderson P, Sutcliffe K, Curtis K. Children as partners with adults in their medical care. Arch Dis Child. 2006;91:300–3.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Rankin D, Cooke DD, Elliott J, Heller SR, Lawton J, UK NIHR DAFNE Study Group. Supporting self-management after attending a structured education programme: a qualitative longitudinal investigation of type 1 diabetes patients’ experiences and views. BMC Public Health. 2012;12:652.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    SEARCH for Diabetes in Youth Study Group, Liese AD, D’Agostino RB Jr, Hamman RF, Kilgo PD, Lawrence JM, et al. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for diabetes in youth study. Pediatrics. 2006;118:1510–8.CrossRefGoogle Scholar
  9. 9.
    Borchers AT, Uibo R, Gershwin ME. The geoepidemiology of type 1 diabetes. Autoimmun Rev. 2010;9:A355–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Ferretti C, La Cava A. Adaptive immune regulation in autoimmune diabetes. Autoimmun Rev. 2016;15:236–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Hawa MI, Beyan H, Buckley LR, Leslie RD. Impact of genetic and non-genetic factors in type 1diabetes. Am J Med Genet. 2002;115:8–17.PubMedCrossRefGoogle Scholar
  12. 12.
    Barbeau WE. What is the key environmental trigger in type 1 diabetes—is it viruses, or wheat gluten, or both? Autoimmun Rev. 2012;12:295–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Fierabracci A. Unravelling the role of infectious agents in the pathogenesis of human autoimmunity: the hypothesis of the retroviral involvement revisited. Curr Mol Med. 2009;9:1024–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Eringsmark Regnéll S, Lernmark A. The environment and the origins of islet autoimmunity and Type 1 diabetes. Diabet Med. 2013;30:155–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Wu YL, Ding YP, Gao J, Tanaka Y, Zhang W. Risk factors and primary prevention trials for type 1 diabetes. Int J Biol Sci. 2013;9:666–79.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gianchecchi E, Crinò A, Giorda E, Luciano R, Perri V, Lo Russo A, et al. Altered B cell homeostasis and Toll-like receptor driven response in Type 1 diabetic carriers of the C1858T PTPN22 allelic variant: implications for the role of innate immunity mechanisms in the disease pathogenesis and outcome. PLoS ONE. 2014;9:e110755.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Todd JA. Etiology of type 1 diabetes. Immunity. 2010;32:457–67.PubMedCrossRefGoogle Scholar
  18. 18.
    Kockum I, Lernmark A, Dahlquist G, Falorni A, Hagopian WA, Landin-Olsson M, et al. Genetic and immunological findings in patients with newly diagnosed insulin-dependent diabetes mellitus. The Swedish Childhood Diabetes Study Group and The Diabetes Incidence in Sweden Study (DISS) Group. Horm Metab Res. 1996;28:344–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Gorodezky C, Alaez C, Murguía A, Rodríguez A, Balladares S, Vazquez M, et al. HLA and autoimmune diseases: type 1 diabetes (T1D) as an example. Autoimmun Rev. 2006;5:187–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Sanjeevi CB, Falorni A, Kockum I, Hagopian WA, Lernmark A. HLA and glutamic acid decarboxylase in human insulin-dependent diabetes mellitus. Diabet Med. 1996;13:209–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Gianchecchi E, Palombi M, Fierabracci A. The putative role of the C1858T polymorphism of protein tyrosine phosphatase PTPN22 gene in autoimmunity. Autoimmun Rev. 2013;12:717–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Zheng J, Petersen F, Yu X. The role of PTPN22 in autoimmunity: learning from mice. Autoimmun Rev. 2014;13:266–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Yoon JW. The role of viruses and environmental factors in the induction of diabetes. Curr Top Microbiol Immunol. 1990;164:95–123.PubMedGoogle Scholar
  24. 24.
    Spagnuolo I, Patti A, Sebastiani G, Nigi L, Dotta F. The case for virus-induced type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2013;20:292–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Richer MJ, Horwitz MS. Coxsackievirus infection as an environmental factor in the etiology of type 1 diabetes. Autoimmun Rev. 2009;8:611–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Drescher KM, von Herrath M, Tracy S. Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev Med Virol. 2015;25:19–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Goldberg E, Krause I. Infection and type 1 diabetes mellitus—a two edged sword? Autoimmun Rev. 2009;8:682–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2016;12(3):154–67.PubMedCrossRefGoogle Scholar
  29. 29.
    Paun A, Yau C, Danska JS. Immune recognition and response to the intestinal microbiome in type 1 diabetes. J Autoimmun. 2016;71:10–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Jimenez E, Marin ML, Martin R, Odriozola JM, Olivares M, Xaus J, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159:187–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Stout MJ, Conlon B, Landeau M, Lee I, Bower C, Zhao Q, et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol. 2013;208(3):226.e1–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Vereecke L, Beyaert R, van Loo G. Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med. 2011;17:584–93.PubMedCrossRefGoogle Scholar
  33. 33.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Vaarala O. Gut microbiota and type 1 diabetes. Rev Diabet Stud. 2012;9:251–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.PubMedCrossRefGoogle Scholar
  37. 37.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291:1304–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Peterson CT, Sharma V, Elmén L, Peterson SN. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2015;179:363–77.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gough EK, Prendergast AJ, Mutasa KE, Stoltzfus RJ, Manges AR. Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team. Assessing the Intestinal Microbiota in the SHINE Trial. Clin Infect Dis. 2015;61:S738–44.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ogilvie LA, Jones BV. The human gut virome: a multifaceted majority. Front Microbiol. 2015;6:918.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, et al. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 2006;4:e3.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaiko GE, Stappenbeck TS. Host-microbe interactions shaping the gastrointestinal environment. Trends Immunol. 2014;35:538–48.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Delzenne NM, Cani PD, Everard A, Neyrinck AM, Bindels LB. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia. 2015;58:2206–17.PubMedCrossRefGoogle Scholar
  45. 45.
    Geuking MB, Köller Y, Rupp S, McCoy KD. The interplay between the gut microbiota and the immune system. Gut Microbes. 2014;5:411–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRefGoogle Scholar
  47. 47.
    Chung H, Kasper DL. Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol. 2010;22:455–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Duerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity. 2009;31:368–76.PubMedCrossRefGoogle Scholar
  50. 50.
    Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–64.PubMedGoogle Scholar
  51. 51.
    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6:121–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Hooper LV. Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol. 2009;7:367–74.PubMedCrossRefGoogle Scholar
  54. 54.
    Stecher B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol Spectr. 2015. doi: 10.1128/microbiolspec.MBP-0008-2014.
  55. 55.
    Galán JE, Collmer A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science. 1999;284:1322–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006;20:1487–95.PubMedCrossRefGoogle Scholar
  57. 57.
    Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3:15.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Muraca M, Putignani L, Fierabracci A, Teti A, Perilongo G. Gut microbiota-derived outer membrane vesicles: under-recognized major players in health and disease? Discov Med. 2015;19:343–8.PubMedGoogle Scholar
  59. 59.
    Avila-Calderón ED, Araiza-Villanueva MG, Cancino-Diaz JC, López-Villegas EO, Sriranganathan N, Boyle SM, et al. Roles of bacterial membrane vesicles. Arch Microbiol. 2015;197:1–10.PubMedCrossRefGoogle Scholar
  60. 60.
    Renelli M, Matias V, Lo RY, Beveridge TJ. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology. 2004;50:2161–9.CrossRefGoogle Scholar
  61. 61.
    Pérez-Cruz C, Delgado L, López-Iglesias C, Mercade E. Outer-inner membrane vesicles naturally secreted by Gram-negative pathogenic bacteria. PLoS ONE. 2015;10:e0116896.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Galdiero M, Folgore A, Molitierno M, Greco R. Porins and lipopolysaccharide (LPS) from Salmonella typhimurium induce leucocyte transmigration through human endothelial cells in vitro. Clin Exp Immunol. 1999;116:453–61.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF. Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol. 2005;174:4901–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Goldacre MJ, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008;51:726–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Salminen S, Gibson GR, McCartney AL, Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004;53:1388–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–21.CrossRefGoogle Scholar
  70. 70.
    Adlerberth I, Lindberg E, Aberg N, Hesselmar B, Saalman R, Strannegård IL, et al. Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle? Pediatr Res. 2006;59:96–101.PubMedCrossRefGoogle Scholar
  71. 71.
    Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol. 1984;28:975–86.PubMedCrossRefGoogle Scholar
  72. 72.
    Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    O’Toole PW, Claesson MJ. Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J. 2010;20:281–91.CrossRefGoogle Scholar
  74. 74.
    Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature. 2013;501:426–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502:96–9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10:323–35.PubMedPubMedCentralGoogle Scholar
  77. 77.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA. 2010;107:18933–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10:131–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Goto Y, Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol Rev. 2012;245:147–63.PubMedCrossRefGoogle Scholar
  82. 82.
    Ma HD, Wang YH, Chang C, Gershwin ME, Lian ZX. The intestinal microbiota and microenvironment in liver. Autoimmun Rev. 2015;14:183–91.PubMedCrossRefGoogle Scholar
  83. 83.
    Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8:411–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol. 2001;167:1882–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol. 2012;15:57–62.PubMedCrossRefGoogle Scholar
  86. 86.
    Salzman NH, Bevins CL. Dysbiosis—a consequence of Paneth cell dysfunction. Semin Immunol. 2013;25:334–41.PubMedCrossRefGoogle Scholar
  87. 87.
    Kaetzel CS. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism. Immunol Lett. 2014;162:10–21.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Koropatkin NM, Cameron EA, Martens EC, Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–45.CrossRefGoogle Scholar
  89. 89.
    Larsson E, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A, et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut. 2012;61:1124–31.PubMedCrossRefGoogle Scholar
  90. 90.
    Yang SK, Eckmann L, Panja A, Kagnoff MF. Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology. 1997;113:1214–23.PubMedCrossRefGoogle Scholar
  91. 91.
    Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA, Denning TL, et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature. 2013;497:258–62.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Izcue A, Coombes JL, Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev. 2006;212:256–71.PubMedCrossRefGoogle Scholar
  93. 93.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;19(504):446–50.CrossRefGoogle Scholar
  95. 95.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Bohmig GA, Krieger PM, Saemann MD, Wenhardt C, Pohanka E, Zlabinger GJ. n-Butyrate downregulates the stimulatory function of peripheral blood-derived antigen-presenting cells: a potential mechanism for modulating T-cell responses by short-chain fatty acids. Immunology. 1997;92:234–43.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Säemann MD, Böhmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14:2380–2.PubMedGoogle Scholar
  98. 98.
    Säemann MD, Parolini O, Böhmig GA, Kelemen P, Krieger PM, Neumüller J, et al. Bacterial metabolite interference with maturation of human monocyte-derived dendritic cells. J Leukoc Biol. 2002;71:238–46.PubMedGoogle Scholar
  99. 99.
    Cavaglieri CR, Nishiyama A, Fernandes LC, Curi R, Miles EA, Calder PC. Differential effects of short-chain fatty acids on proliferation and production of pro-and anti-inflammatory cytokines by cultured lymphocytes. Life Sci. 2003;73:1683–90.PubMedCrossRefGoogle Scholar
  100. 100.
    Millard AL, Mertes PM, Ittelet D, Villard F, Jeannesson P, Bernard J. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol. 2002;130:245–55.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tien MT, Girardin SE, Regnault B, Le Bourhis L, Dillies MA, Coppée JY, et al. Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol. 2006;176:1228–37.PubMedCrossRefGoogle Scholar
  102. 102.
    Fernandez EM, Valenti V, Rockel C, Hermann C, Pot B, Boneca IG, et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut. 2011;60:1050–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Brown K, Godovannyi A, Ma C, Zhang Y, Ahmadi-Vand Z, Dai C, et al. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice. ISME J. 2016;10:321–32.PubMedCrossRefGoogle Scholar
  104. 104.
    Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456:507–10.PubMedCrossRefGoogle Scholar
  105. 105.
    Taylor BC, Zaph C, Troy AE, Du Y, Guild KJ, Comeau MR, et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J Exp Med. 2009;206:655–67.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.PubMedCrossRefGoogle Scholar
  107. 107.
    McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142:24–31.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Gülden E, Wong FS, Wen L. The gut microbiota and Type 1 diabetes. Clin Immunol. 2015;159:143–53.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, Kirschning C, et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity. 2012;37:171–86.PubMedCrossRefGoogle Scholar
  110. 110.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41.PubMedCrossRefGoogle Scholar
  111. 111.
    Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19:59–69.PubMedCrossRefGoogle Scholar
  112. 112.
    Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3:4–14.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4:478–85.PubMedCrossRefGoogle Scholar
  114. 114.
    Putsep K, Axelsson LG, Boman A, Midtvedt T, Normark S, Boman HG, et al. Germ-free and colonized mice generate the same products from enteric prodefensins. J Biol Chem. 2000;275:40478–82.PubMedCrossRefGoogle Scholar
  115. 115.
    Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334:255–8.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313:1126–30.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–85.PubMedCrossRefGoogle Scholar
  118. 118.
    Alam C, Bittoun E, Bhagwat D, Valkonen S, Saari A, Jaakkola U. Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice. Diabetologia. 2011;54:1398–406.PubMedCrossRefGoogle Scholar
  119. 119.
    Shen Y, Torchia MLG, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012;12:509–20.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–5.PubMedCrossRefGoogle Scholar
  121. 121.
    Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 2010;107:12204–9.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J, Kronenberg M, et al. Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol. 2013;11:e1001610.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337–49.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hrncir T, Stepankova R, Kozakova H, Hudcovic T, Tlaskalova-Hogenova H. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol. 2008;9:65.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Durkin HG, Chice SM, Gaetjens E, Bazin H, Tarcsay L, Dukor P. Origin and fate of IgE-bearing lymphocytes. II. Modulation of IgE isotype expression on Peyer’s patch cells by feeding with certain bacteria and bacterial cell wall components or by thymectomy. J Immunol. 1989;143:1777–83.PubMedGoogle Scholar
  127. 127.
    Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455:1109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10:159–69.PubMedCrossRefGoogle Scholar
  129. 129.
    Salzman NH. Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol. 2011;14:99–105.PubMedCrossRefGoogle Scholar
  130. 130.
    Abrams GD, Bauer H, Sprinz H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab Invest. 1963;12:355–64.PubMedGoogle Scholar
  131. 131.
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291:881–4.PubMedCrossRefGoogle Scholar
  132. 132.
    Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology. 2004;127:224–38.PubMedCrossRefGoogle Scholar
  133. 133.
    Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11:76–83.PubMedCrossRefGoogle Scholar
  134. 134.
    Tonutti E, Agostinis P, Bizzaro N. Inflammatory bowel diseases: where we are and where we should go. Clin Chem Lab Med. 2014;52:463–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Hollon J, Puppa EL, Greenwald B, Goldberg E, Guerrerio A, Fasano A. Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients. 2015;7:1565–76.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Lerner A, Matthias T. Rheumatoid arthritis-celiac disease relationship: joints get that gut feeling. Autoimmun Rev. 2015;14:1038–47.PubMedCrossRefGoogle Scholar
  137. 137.
    Moco S, Candela M, Chuang E, Draper C, Cominetti O, Montoliu I, et al. Systems biology approaches for inflammatory bowel disease: emphasis on gut microbial metabolism. Inflamm Bowel Dis. 2014;20:2104–14.PubMedCrossRefGoogle Scholar
  138. 138.
    Asquith M, Elewaut D, Lin P, Rosenbaum JT. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract Res Clin Rheumatol. 2014;28:687–702.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Picco P, Gattorno M, Marchese N, Vignola S, Sormani MP, Barabino A, et al. Increased gut permeability in juvenile chronic arthritides. A multivariate analysis of the diagnostic parameters. Clin Exp Rheumatol. 2000;18:773–8.PubMedGoogle Scholar
  140. 140.
    Mielants H, De Vos M, Goemaere S, Schelstraete K, Cuvelier C, Goethals K, et al. Intestinal mucosal permeability in inflammatory rheumatic diseases. II. Role of disease. J Rheumatol. 1991;18:394–400.PubMedGoogle Scholar
  141. 141.
    Cohn A, Sofia AM, Kupfer SS. Type 1 diabetes and celiac disease: clinical overlap and new insights into disease pathogenesis. Curr Diab Rep. 2014;14:517.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Consolandi C, Turroni S, Emmi G, Severgnini M, Fiori J, Peano C, et al. Behçet’s syndrome patients exhibit specific microbiome signature. Autoimmun Rev. 2015;14:269–76.PubMedCrossRefGoogle Scholar
  143. 143.
    Hansen AK, Ling F, Kaas A, Funda D, Farlov H, Buschard K. Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice. Diabetes Metab Res Rev. 2006;22:220–5.PubMedCrossRefGoogle Scholar
  144. 144.
    Marietta EV, Gomez AM, Yeoman C, Tilahun AY, Clark CR, Luckey DH, et al. Low incidence of spontaneous type 1 diabetes in nonobese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One. 2013;8:e78687. doi: 10.1371/journal.pone.0078687.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Hansen CHF, Krych L, Buschard K, Metzdorff SB, Nellemand CN, Hansen LH, et al. A maternal gluten free diet reduces inflammation and diabetes incidence in the offspring of NOD mice. Diabetes. 2014;63:2821–32.PubMedCrossRefGoogle Scholar
  146. 146.
    Funda DP, Kaas A, Bock H, Tlaskalova-Hogenova H, Buschard K. Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev. 1999;15:323–7.PubMedCrossRefGoogle Scholar
  147. 147.
    Flohe SB, Wasmuth HE, Kerad JB, Beales PE, Pozzilli P, Elliott RB, et al. A wheat-based, diabetes-promoting diet induces a Th1-type cytokine bias in the gut of NOD mice. Cytokine. 2003;21:149–54.PubMedCrossRefGoogle Scholar
  148. 148.
    Antvorskov JC, Fundova P, Buschard K, Funda DP. Dietary gluten alters the balance of proinflammatory and anti-inflammatory cytokines in T cells of BALB/c mice. Immunology (UK). 2012;138:23–33.CrossRefGoogle Scholar
  149. 149.
    Antvorskov JC, Fundova P, Buschard K, Funda DP. Impact of dietary gluten on regulatory T cells and Th17 cells in BALB/c mice. PLoS ONE. 2012;7:e33315.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Funda DP, Kaas A, Tlaskalova-Hogenova H, Buschard K. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab Res Rev. 2008;24:59–63.PubMedCrossRefGoogle Scholar
  151. 151.
    Patrick C, Wang GS, Lefebvre DE, Crookshank JA, Sonier B, Eberhard C, et al. Promotion of autoimmune diabetes by cereal diet in the presence or absence of microbes associated with gut immune activation, regulatory imbalance, and altered cathelicidin antimicrobial peptide. Diabetes. 2013;62:2036–47.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Cosnes J, Cellier C, Viola S, Colombel JF, Michaud L, Sarles J, et al. Incidence of autoimmune diseases in celiac disease: protective effect of the gluten-free diet. Clin Gastroenterol Hepatol. 2008;6:753–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Sildorf SM, Fredheim S, Svensson J, Buschard K. Remission without insulin therapy on gluten-free diet in a 6-year old boy with type 1 diabetes mellitus. BMJ Case Rep. 2012. doi: 10.1136/bcr.02.2012.5878.
  154. 154.
    Wolf KJ, Daft JG, Tanner SM, Hartmann R, Khafipour E, Lorenz RG. Consumption of acidic water alters the gut microbiome and decreases the risk of diabetes in NOD mice. J Histochem Cytochem. 2014;62:237–50.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Nielsen DS, Krych Ł, Buschard K, Hansen CH, Hansen AK. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett. 2014;588:4234–43.PubMedCrossRefGoogle Scholar
  156. 156.
    Zipris D. The interplay between the gut microbiota and the immune system in the mechanism of type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2013;20:265–70.PubMedCrossRefGoogle Scholar
  157. 157.
    Boermer BP, Sarvetnick NE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann NY Acad Sci. 2011;1243:103–18.CrossRefGoogle Scholar
  158. 158.
    Brugman S, Klatter FA, Visser JT, Wildeboer-Veloo AC, Harmsen HJ, Rozing J, et al. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia. 2006;49:2105–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Schwartz RF, Neu J, Schatz D, Atkinson MA, Wasserfall C. Comment on: Brugman S, et al. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type-1 diabetes? Diabetologia. 2007;49:2105–8.Google Scholar
  160. 160.
    Hansen CH, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sorensen SJ, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55:2285–94.PubMedCrossRefGoogle Scholar
  161. 161.
    Satoh J, Shintani S, Oya K, Tanaka S, Nobunaga T, Toyota T, et al. Treatment with streptococcal preparation (OK-432) suppresses anti-islet autoimmunity and prevents diabetes in BB rats. Diabetes. 1988;37:1188–94.PubMedCrossRefGoogle Scholar
  162. 162.
    McInerney MF, Pek SB, Thomas DW. Prevention of insulitis and diabetes onset by treatment with complete Freund’s adjuvant in NOD mice. Diabetes. 1991;40:715–25.PubMedCrossRefGoogle Scholar
  163. 163.
    Qin HY, Singh B. BCG vaccination prevents insulin-dependent diabetes mellitus (IDDM) in NOD mice after disease acceleration with cyclophosphamide. J Autoimmun. 1997;10:271–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Matsuzaki T, Nagata Y, Kado S, Uchida K, Kato I, Hashimoto S, et al. Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS. 1997;105:643–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Calcinaro F, Dionisi S, Marinaro M, Candeloro P, Bonato V, Marzotti S, et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia. 2005;48:1565–75.PubMedCrossRefGoogle Scholar
  166. 166.
    Yurkovetskiy LA, Pickard JM, Chervonsky AV. Microbiota and autoimmunity: exploring new avenues. Cell Host Microbe. 2015;17:548–52.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Atkinson MA, Chervonsky A. Does the gut microbiota have a role in type 1 diabetes? Early evidence from humans and animal models of the disease. Diabetologia. 2012;55:2868–77.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339:1084–8.PubMedCrossRefGoogle Scholar
  169. 169.
    King C, Sarvetnick N. The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions. PLoS ONE. 2011;6:e17049.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Gianchecchi E, Fierabracci A. Gene/environment interactions in the pathogenesis of autoimmunity: new insights on the role of toll-like receptors. Autoimmun Rev. 2015;14:971–83.PubMedCrossRefGoogle Scholar
  171. 171.
    Neu J, Reverte CM, Mackey AD, Liboni K, Tuhacek-Tenace LM, Hatch M, et al. Changes in intestinal morphology and permeability in the BioBreeding rat before the onset of type 1 diabetes. J Pediatr Gastroenterol Nutr. 2005;40:589–95.PubMedCrossRefGoogle Scholar
  172. 172.
    Watts T, Berti I, Sapone A, Gerarduzzi T, Not T, Zielke R, et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci USA. 2005;102:2916–21.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP. Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia. 2010;53:741–8.PubMedCrossRefGoogle Scholar
  174. 174.
    Visser JT, Lammers K, Hoogendijk A, Boer MW, Brugman S, Beijer-Liefers S, et al. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia. 2010;53:2621–8.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Björkstén B. Effects of intestinal microflora and the environment on the development of asthma and allergy. Semin Immunopathol. 2004;25:257–70.CrossRefGoogle Scholar
  176. 176.
    Secondulfo M, Iafusco D, Carratu R, deMagistris L, Sapone A, Generoso M. Ultrastructural mucosal alterations and increased intestinal permeability in nonceliac, type I diabetic patients. Dig Liver Dis. 2004;36:35–45.PubMedCrossRefGoogle Scholar
  177. 177.
    Bosi E, Molteni L, Radaelli MG, Folini L, Fermo I, Bazzigaluppi E, et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia. 2006;49:2824–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Meddings JB, Jarand J, Urbanski SJ, Hardin J, Gall DG. Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am J Physiol. 1999;276:G951–7.PubMedGoogle Scholar
  179. 179.
    Maffeis C, Martina A, Corradi M, Quarella S, Nori N, Torriani S, et al. Association between intestinal permeability and fecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Diabetes Metab Res Rev. 2016.Google Scholar
  180. 180.
    Harjutsalo V, Sjoberg L, Tuomilehto J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet. 2008;371:1777–82.PubMedCrossRefGoogle Scholar
  181. 181.
    Khashan AS, Kenny LC, Lundholm C, Kearney PM, Gong T, Almqvist C. Mode of obstetrical delivery and type 1 diabetes: a sibling design study. Pediatrics. 2014;134:e806–13.PubMedCrossRefGoogle Scholar
  182. 182.
    Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE. 2011;6:e25792.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5:82–91.PubMedCrossRefGoogle Scholar
  184. 184.
    Dunne JL, Triplett EW, Gevers D, Xavier R, Insel R, Danska J, et al. The intestinal microbiome in type 1 diabetes. Clin Exp Immunol. 2014;177:30–7.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    de Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 2014;57:1569–77.PubMedCrossRefGoogle Scholar
  186. 186.
    Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8:110–20.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T, et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes. 2013;62:1238–44.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013;11:46.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Mejía-León ME, Petrosino JF, Ajami NJ, Domínguez-Bello MG, de la Barca AM. Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep. 2014;4:3814.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Endesfelder D, Wz Castell, Ardissone A, Davis-Richardson AG, Achenbach P, Hagen M, et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes. 2014;63:2006–14.PubMedCrossRefGoogle Scholar
  191. 191.
    Finnie IA, Dwarakanath AD, Taylor BA, Rhodes JM. Colonic mucin synthesis is increased by sodium butyrate. Gut. 1995;36:93–9.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Burger-van Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J, Boehm G, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J. 2009;420:211–9.PubMedCrossRefGoogle Scholar
  193. 193.
    Peron JP, de Oliveira AP, Rizzo LV. It takes guts for tolerance: the phenomenon of oral tolerance and the regulation of autoimmune response. Autoimmun Rev. 2009;9:1–4.PubMedCrossRefGoogle Scholar
  194. 194.
    Takiishi T, Korf H, Van Belle TL, Robert S, Grieco FA, Caluwaerts S, et al. Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest. 2012;122:1717–25.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Ma Y, Liu J, Hou J, Dong Y, Lu Y, Jin L, et al. Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. PLoS ONE. 2014;9:e105701.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I, Sebastiani G, et al. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes. 2014;63:2876–87.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Vismederi SrlSienaItaly
  2. 2.Infectivology and Clinical Trials AreaBambino Gesù Children’s Hospital, IRCCSRomeItaly

Personalised recommendations