Immunologic Research

, Volume 65, Issue 1, pp 136–149 | Cite as

Behavioral abnormalities in female mice following administration of aluminum adjuvants and the human papillomavirus (HPV) vaccine Gardasil

  • Rotem Inbar
  • Ronen Weiss
  • Lucija Tomljenovic
  • Maria-Teresa Arango
  • Yael Deri
  • Christopher A. Shaw
  • Joab Chapman
  • Miri Blank
  • Yehuda Shoenfeld
Environment and Autoimmunity

Abstract

Vaccine adjuvants and vaccines may induce autoimmune and inflammatory manifestations in susceptible individuals. To date most human vaccine trials utilize aluminum (Al) adjuvants as placebos despite much evidence showing that Al in vaccine-relevant exposures can be toxic to humans and animals. We sought to evaluate the effects of Al adjuvant and the HPV vaccine Gardasil versus the true placebo on behavioral and inflammatory parameters in female mice. Six-week-old C57BL/6 female mice were injected with either, Gardasil, Gardasil + pertussis toxin (Pt), Al hydroxide, or, vehicle control in amounts equivalent to human exposure. At 7.5 months of age, Gardasil and Al-injected mice spent significantly more time floating in the forced swimming test (FST) in comparison with vehicle-injected mice (Al, p = 0.009; Gardasil, p = 0.025; Gardasil + Pt, p = 0.005). The increase in floating time was already highly significant at 4.5 months of age for the Gardasil and Gardasil + Pt group (p ≤ 0.0001). No significant differences were observed in the number of stairs climbed in the staircase test which measures locomotor activity. These results indicate that differences observed in the FST were unlikely due to locomotor dysfunction, but rather due to depression. Moreover, anti-HPV antibodies from the sera of Gardasil and Gardasil + Pt-injected mice showed cross-reactivity with the mouse brain protein extract. Immunohistochemistry analysis revealed microglial activation in the CA1 area of the hippocampus of Gardasil-injected mice. It appears that Gardasil via its Al adjuvant and HPV antigens has the ability to trigger neuroinflammation and autoimmune reactions, further leading to behavioral changes.

Keywords

Gardasil Aluminum ASIA syndrome Autoantibodies Autoimmunity Neuroinflammation 

Abbreviations

Al

Aluminum

ASIA

Autoimmune/autoinflammatory syndrome induced by adjuvants

β2-GPI

β2-Glycoprotein I

FST

Forced swimming test

HPV

Human papilloma virus

Pt

Pertussis toxin

U. S FDA

United States Food and Drug Administration

References

  1. 1.
    Marra F, et al. A meta-analysis of intradermal versus intramuscular influenza vaccines: immunogenicity and adverse events. Influenza Other Respir Viruses. 2013;7(4):584–603. doi:10.1111/irv.12000.CrossRefPubMedGoogle Scholar
  2. 2.
    Perricone C, et al. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: unveiling the pathogenic, clinical and diagnostic aspects. J Autoimmun. 2013;47:1–16. doi:10.1016/j.jaut.2013.10.004.CrossRefPubMedGoogle Scholar
  3. 3.
    Tomljenovic L, Shaw CA. No autoimmune safety signal after vaccination with quadrivalent HPV vaccine Gardasil? J Intern Med. 2012;272(5):514–5. doi:10.1111/j.1365-2796.2012.02551.x.CrossRefPubMedGoogle Scholar
  4. 4.
    Blitshteyn S. Postural tachycardia syndrome following human papillomavirus vaccination. Eur J Neurol. 2014;21(1):135–9. doi:10.1111/ene.12272.CrossRefPubMedGoogle Scholar
  5. 5.
    Poser CM, Behan PO. Late onset of Guillain-Barre syndrome. J Neuroimmunol. 1982;3(1):27–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Ryan AM, et al. Atypical presentation of macrophagic myofasciitis 10 years post vaccination. Neuromuscul Disord. 2006;16(12):867–9. doi:10.1016/j.nmd.2006.07.017.CrossRefPubMedGoogle Scholar
  7. 7.
    Exley C. Aluminium-based adjuvants should not be used as placebos in clinical trials. Vaccine. 2011;29(50):9289. doi:10.1016/j.vaccine.2011.08.062.CrossRefPubMedGoogle Scholar
  8. 8.
    Lujan L, et al. Autoimmune/autoinflammatory syndrome induced by adjuvants (ASIA syndrome) in commercial sheep. Immunol Res. 2013;56(2–3):317–24. doi:10.1007/s12026-013-8404-0.CrossRefPubMedGoogle Scholar
  9. 9.
    Couette M, et al. Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction. J Inorg Biochem. 2009;103(11):1571–8. doi:10.1016/j.jinorgbio.2009.08.005.CrossRefPubMedGoogle Scholar
  10. 10.
    Gherardi RK, et al. Biopersistence and brain translocation of aluminum adjuvants of vaccines. Front Neurol. 2015;6:4. doi:10.3389/fneur.2015.00004.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rigolet M, et al. Clinical features in patients with long-lasting macrophagic myofasciitis. Front Neurol. 2014;5:230. doi:10.3389/fneur.2014.00230.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Marrack P, et al. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9(4):287–93. doi:10.1038/nri2510.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shaw CA, Petrik MS. Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem. 2009;103(11):1555–62. doi:10.1016/j.jinorgbio.2009.05.019.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li X, et al. Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains. Nanomedicine. 2009;5(4):473–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhu Y, et al. Immunotoxicity of aluminum. Chemosphere. 2014;104:1–6. doi:10.1016/j.chemosphere.2013.10.052.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen L, et al. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol. 2008;3(4):286–95. doi:10.1007/s11481-008-9131-5.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Eldred BE, et al. Vaccine components and constituents: responding to consumer concerns. Med J Aust. 2006;184(4):170–5.PubMedGoogle Scholar
  18. 18.
    Shoenfeld Y, et al. Vaccination as an additional player in the mosaic of autoimmunity. Clin Exp Rheumatol. 2000;18(2):181–4.PubMedGoogle Scholar
  19. 19.
    Shoenfeld Y. Infections, vaccines and autoimmunity. Lupus. 2009;18(13):1127–8. doi:10.1177/0961203309351081.CrossRefPubMedGoogle Scholar
  20. 20.
    Tomljenovic L, Shaw CA. Human papillomavirus (HPV) vaccine policy and evidence-based medicine: Are they at odds? Ann Med. 2013;45(2):182–93. doi:10.3109/07853890.2011.645353.CrossRefPubMedGoogle Scholar
  21. 21.
    Garland SM, et al. (FUTURE) I Investigators) Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med. 2007;356(19):1928–43. doi:10.1056/NEJMoa061760.CrossRefPubMedGoogle Scholar
  22. 22.
    Munoz N, et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24–45 years: a randomised, double-blind trial. Lancet. 2009;373(9679):1949–57. doi:10.1016/S0140-6736(09)60691-7.CrossRefPubMedGoogle Scholar
  23. 23.
    Can A, et al. The mouse forced swim test. J Vis Exp. 2012;59:e3638. doi:10.3791/3638.Google Scholar
  24. 24.
    Tordera RM, et al. Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1). Eur J Neurosci. 2007;25:281–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Katzav A, et al. Hyperactivity in a mouse model of the antiphospholipid syndrome. Lupus. 2001;10:496–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Brown JA, et al. Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. Human Mol Genet. 2010;19(22):4515–28.CrossRefGoogle Scholar
  27. 27.
    Harper DM, et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet. 2006;367(9518):1247–55. doi:10.1016/S0140-6736(06)68439-0.CrossRefPubMedGoogle Scholar
  28. 28.
    Villa LL, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol. 2005;6(5):271–8. doi:10.1016/S1470-2045(05)70101-7.CrossRefPubMedGoogle Scholar
  29. 29.
    Mao C, et al. Efficacy of human papillomavirus-16 vaccine to prevent cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol. 2006;107(1):18–27. doi:10.1097/01.AOG.0000192397.41191.fb.CrossRefPubMedGoogle Scholar
  30. 30.
    Group TFIS. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356(19):1915–27. doi:10.1056/NEJMoa061741.CrossRefGoogle Scholar
  31. 31.
    Verstraeten T, et al. Analysis of adverse events of potential autoimmune aetiology in a large integrated safety database of AS04 adjuvanted vaccines. Vaccine. 2008;26(51):6630–8. doi:10.1016/j.vaccine.2008.09.049.CrossRefPubMedGoogle Scholar
  32. 32.
    Guimaraes LE, et al. Vaccines, adjuvants and autoimmunity. Pharmacol Res. 2015;100:190–209. doi:10.1016/j.phrs.2015.08.003.CrossRefPubMedGoogle Scholar
  33. 33.
    Shaw CA, et al. Are there negative CNS impacts of aluminum adjuvants used in vaccines and immunotherapy? Immunotherapy. 2014;6(10):1055–71. doi:10.2217/imt.14.81.CrossRefPubMedGoogle Scholar
  34. 34.
    Exley C. Aluminium adjuvants and adverse events in sub-cutaneous allergy immunotherapy. Allergy Asthma Clin Immunol. 2014;10(1):4. doi:10.1186/1710-1492-10-4.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Passeri E, et al. Long-term follow-up of cognitive dysfunction in patients with aluminum hydroxide-induced macrophagic myofasciitis (MMF). J Inorg Biochem. 2011;105(11):1457–63. doi:10.1016/j.jinorgbio.2011.08.006.CrossRefPubMedGoogle Scholar
  36. 36.
    Zivkovic I, et al. Induction of decreased fecundity by tetanus toxoid hyper-immunization in C57BL/6 mice depends on the applied adjuvant. Innate Immun. 2012;18(2):333–42. doi:10.1177/1753425911407361.CrossRefPubMedGoogle Scholar
  37. 37.
    Agmon-Levin N, et al. Immunization with hepatitis B vaccine accelerates SLE-like disease in a murine model. J Autoimmun. 2014;54:21–32. doi:10.1016/j.jaut.2014.06.006.CrossRefPubMedGoogle Scholar
  38. 38.
    Exley C, Birchall JD. The cellular toxicity of aluminium. J Theor Biol. 1992;159(1):83–98.CrossRefPubMedGoogle Scholar
  39. 39.
    Shaw CA, Tomljenovic L. Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res. 2013;56(2–3):304–16. doi:10.1007/s12026-013-8403-1.CrossRefPubMedGoogle Scholar
  40. 40.
    Offit PA, Jew RK. Addressing parents’ concerns: Do vaccines contain harmful preservatives, adjuvants, additives, or residuals? Pediatrics. 2003;112(6 Pt 1):1394–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Khan Z, et al. Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC Med. 2013;11:99. doi:10.1186/1741-7015-11-99.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gherardi RK, et al. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain. 2001;124(Pt 9):1821–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Lee SH. Detection of human papillomavirus L1 gene DNA fragments in postmortem blood and spleen after Gardasil® vaccination—a case report. Adv Biosci Biotech. 2012;3:1214–24.CrossRefGoogle Scholar
  44. 44.
    Walton JR. A longitudinal study of rats chronically exposed to aluminum at human dietary levels. Neurosci Lett. 2007;412(1):29–33. doi:10.1016/j.neulet.2006.08.093.CrossRefPubMedGoogle Scholar
  45. 45.
    Xiu C, et al. Aluminum chloride- and norepinephrine-induced immunotoxicity on splenic lymphocytes by activating beta-AR/cAMP/PKA/NF-kappaB signal pathway in rats. Biol Trace Elem Res. 2014;162(1–3):168–74. doi:10.1007/s12011-014-0149-7.CrossRefPubMedGoogle Scholar
  46. 46.
    Caulfield MJ, et al. Effect of alternative aluminum adjuvants on the absorption and immunogenicity of HPV16 L1 VLPs in mice. Human Vaccin. 2007;3(4):139–45.CrossRefGoogle Scholar
  47. 47.
    FDA. Food and Drug Administration. Inside clinical trials: testing medical products in people. (2009).Google Scholar
  48. 48.
    Kanduc D. Potential cross-reactivity between HPV16 L1 protein and sudden death-associated antigens. J Exp Ther Oncol. 2011;9(2):159–65.PubMedGoogle Scholar
  49. 49.
    Yonee C, et al. Association of acute cerebellar ataxia and human papilloma virus vaccination: a case report. Neuropediatrics. 2013;44(5):265–7. doi:10.1055/s-0033-1333873.CrossRefPubMedGoogle Scholar
  50. 50.
    Kanduc D. Quantifying the possible cross-reactivity risk of an HPV16 vaccine. J Exp Ther Oncol. 2009;8(1):65–76.PubMedGoogle Scholar
  51. 51.
    van Bogaert L. Are the currently existing anti-human papillomavirus vaccines appropriate for the developing world? Ann Med Health Sci Res. 2013;3(3):306–12. doi:10.4103/2141-9248.117924.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mendoza Plasencia Z, et al. Acute disseminated encephalomyelitis with tumefactive lesions after vaccination against human papillomavirus. Neurologia. 2010;25(1):58–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Wildemann B, et al. Acute disseminated encephalomyelitis following vaccination against human papilloma virus. Neurology. 2009;72(24):2132–3. doi:10.1212/WNL.0b013e3181aa53bb.CrossRefPubMedGoogle Scholar
  54. 54.
    Sutton I, et al. CNS demyelination and quadrivalent HPV vaccination. Mult Scler. 2009;15(1):116–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Chang J, et al. Demyelinating disease and polyvalent human papilloma virus vaccination. J Neurol Neurosurg Psychiatry. 2011;82(11):1296–8. doi:10.1136/jnnp.2010.214924.CrossRefPubMedGoogle Scholar
  56. 56.
    McCarthy JE, Filiano J. Opsoclonus Myoclonus after human papilloma virus vaccine in a pediatric patient. Parkinsonism Relat Disord. 2009;15(10):792–4. doi:10.1016/j.parkreldis.2009.04.002.CrossRefPubMedGoogle Scholar
  57. 57.
    Menge T, et al. Neuromyelitis optica following human papillomavirus vaccination. Neurology. 2012;79(3):285–7. doi:10.1212/WNL.0b013e31825fdead.CrossRefPubMedGoogle Scholar
  58. 58.
    DiMario FJ Jr, et al. A 16-year-old girl with bilateral visual loss and left hemiparesis following an immunization against human papilloma virus. J Child Neurol. 2010;25(3):321–7. doi:10.1177/0883073809349322.CrossRefPubMedGoogle Scholar
  59. 59.
    Alvarez-Soria MJ, et al. Trastornos neurológicos desmielinizantes y vacunación del papilomavirus humano. Rev Neurol. 2011;52(8):472–6.PubMedGoogle Scholar
  60. 60.
    Zhu YZ, et al. impact of aluminum exposure on the immune system: a mini review. Environ Toxicol Pharmacol. 2013;35(1):82–7. doi:10.1016/j.etap.2012.11.009.CrossRefPubMedGoogle Scholar
  61. 61.
    Debeer P, et al. Brachial plexus neuritis following HPV vaccination. Vaccine. 2008;26(35):4417–9. doi:10.1016/j.vaccine.2008.06.074.CrossRefPubMedGoogle Scholar
  62. 62.
    Brinth LS, et al. Orthostatic intolerance and postural tachycardia syndrome as suspected adverse effects of vaccination against human papilloma virus. Vaccine. 2015;33(22):2602–5. doi:10.1016/j.vaccine.2015.03.098.CrossRefPubMedGoogle Scholar
  63. 63.
    Kinoshita T, et al. Peripheral sympathetic nerve dysfunction in adolescent Japanese girls following immunization with the human papillomavirus vaccine. Intern Med. 2014;53(19):2185–200.CrossRefPubMedGoogle Scholar
  64. 64.
    Blitshteyn S. Postural tachycardia syndrome following human papillomavirus vaccination. Eur J Neurol. 2014;21:135–9. doi:10.1111/ene.12272.CrossRefPubMedGoogle Scholar
  65. 65.
    Richards S, et al. Complex regional pain syndrome following immunisation. Arch Dis Child. 2012;97(10):913–5. doi:10.1136/archdischild-2011-301307.CrossRefPubMedGoogle Scholar
  66. 66.
    Tomljenovic L, et al. Postural orthostatic tachycardia with chronic fatigue after HPV vaccination as part of the “autoimmune/autoinflammatory syndrome induced by adjuvants”: case report and literature review. J Investig Med High Impact Case Rep. 2014;. doi:10.1177/2324709614527812.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Martinez-Lavin M. Fibromyalgia-like illness in 2 girls after human papillomavirus vaccination. J Clin Rheumatol. 2014;20(7):392–3. doi:10.1097/RHU.0000000000000165.PubMedGoogle Scholar
  68. 68.
    Cerami C, et al. Autoimmune neuromyotonia following human papilloma virus vaccination. Muscle Nerve. 2013;47(3):466–7. doi:10.1002/mus.23648.CrossRefPubMedGoogle Scholar
  69. 69.
    Colafrancesco S, et al. HPV vaccines and primary ovarian failure: another facet of the autoimmune/inflammatory syndrome induced by adjuvants (ASIA). Am J Reprod Immunol. 2013;70(4):309–16.CrossRefPubMedGoogle Scholar
  70. 70.
    Little DT, Grenville Ward HR. Adolescent premature ovarian insufficiency following human papillomavirus vaccination: a case series seen in general practice. J Investig Med High Impact Case Rep. 2014;. doi:10.1177/2324709614556129.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Melo Gomes S, et al. Vasculitis following HPV immunization. Rheumatology (Oxford). 2013;52(3):581–2. doi:10.1093/rheumatology/kes168.CrossRefGoogle Scholar
  72. 72.
    Pugnet G, et al. Immune thrombocytopenic purpura following human papillomavirus vaccination. Vaccine. 2009;27(28):3690. doi:10.1016/j.vaccine.2009.04.004.CrossRefPubMedGoogle Scholar
  73. 73.
    Della Corte C, et al. Autoimmune hepatitis type 2 following anti-papillomavirus vaccination in a 11-year-old girl. Vaccine. 2011;29(29):4654–6. doi:10.1016/j.vaccine.2011.05.002.CrossRefPubMedGoogle Scholar
  74. 74.
    Das A, et al. Pancreatitis following human papillomavirus vaccination. Med J Aust. 2008;189(3):178.PubMedGoogle Scholar
  75. 75.
    Soldevilla HF, et al. Systemic lupus erythematosus following HPV immunization or infection? Lupus. 2012;21(2):158–61. doi:10.1177/0961203311429556.CrossRefPubMedGoogle Scholar
  76. 76.
    Gatto M, et al. Human papillomavirus vaccine and systemic lupus erythematosus. Clin Rheumatol. 2013;32(9):1301–7. doi:10.1007/s10067-013-2266-7.CrossRefPubMedGoogle Scholar
  77. 77.
    Anaya JM, et al. Autoimmune/auto-inflammatory syndrome induced by adjuvants (ASIA) after quadrivalent human papillomavirus vaccination in Colombians: a call for personalised medicine. Clin Exp Rheumatol. 2015;33(4):545–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rotem Inbar
    • 1
    • 2
  • Ronen Weiss
    • 3
    • 4
  • Lucija Tomljenovic
    • 1
    • 5
  • Maria-Teresa Arango
    • 1
    • 6
  • Yael Deri
    • 1
  • Christopher A. Shaw
    • 5
  • Joab Chapman
    • 1
    • 7
  • Miri Blank
    • 1
  • Yehuda Shoenfeld
    • 1
    • 8
  1. 1.Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Sackler Faculty of MedicineTel-Aviv UniversityIsraelIsrael
  2. 2.Department of Obstetrics and GynecologySheba Medical CenterTel HashomerIsrael
  3. 3.Sagol School of NeuroscienceTel Aviv UniversityRamat AvivIsrael
  4. 4.Department of Physiology and Pharmacology, Sackler Faculty of MedicineTel Aviv UniversityRamat AvivIsrael
  5. 5.Neural Dynamics Research Group, Department of Ophthalmology and Visual SciencesUniversity of British ColumbiaVancouverCanada
  6. 6.Doctoral Program in Biomedical SciencesUniversidad del RosarioBogotaColombia
  7. 7.Department of Neurology and Sagol Neuroscience CenterThe Sheba Medical CenterTel HashomerIsrael
  8. 8.Incumbent of the Laura Schwarz-Kip Chair for Research of Autoimmune Diseases, Sackler Faculty of MedicineTel-Aviv UniversityRamat AvivIsrael

Personalised recommendations