Advertisement

Immunologic Research

, Volume 64, Issue 4, pp 1060–1070 | Cite as

VEGFR2-targeted fusion antibody improved NK cell-mediated immunosurveillance against K562 cells

  • Xueyan Ren
  • Wei Xie
  • Youfu Wang
  • Menghuai Xu
  • Fang Liu
  • Mingying Tang
  • Chenchen Li
  • Min WangEmail author
  • Juan ZhangEmail author
Original Article

Abstract

MHC class I polypeptide-related sequence A (MICA), which is normally expressed on cancer cells, activates NK cells via NK group 2-member D pathway. However, some cancer cells escape NK-mediated immune surveillance by shedding membrane MICA causing immune suppression. To address this issue, we designed an antibody-MICA fusion targeting tumor-specific antigen (vascular endothelial growth factor receptor 2, VEGFR2) based on our patented antibody (mAb04) against VEGFR2. In vitro results demonstrate that the fusion antibody retains both the antineoplastic and the immunomodulatory activity of mAb04. Further, we revealed that it enhanced NK-mediated immunosurveillance against K562 cells through increasing degranulation and cytokine production of NK cells. The overall data suggest our new fusion protein provides a promising approach for cancer-targeted immunotherapy and has prospects for potential application of chronic myeloid leukemia.

Keywords

Antibody fusion protein Vascular endothelial growth factor receptor 2 (VEGFR2) MHC class I polypeptide-related sequence A (MICA) Immunosurveillance 

Abbreviations

ADCC

Antibody-dependent cellular cytotoxicity

ATCC

American Type Culture Collection

AML

Acute myeloid leukemia

CDC

Complement-dependent cytotoxicity

FACS

Fluorescence-activated cell sorter

FBS

Fetal bovine serum

Fc

Fragment crystallizable

FcγRs

Fc gamma receptors

FITC

Fluorescein isothiocyanate

IF

Immunofluorescence

IFN-γ

Interferon gamma

MHC

Major histocompatibility complex

MICA/B

MHC class I polypeptide-related sequence A/B

NKG2D

NK group 2-member D

PBMCs

Peripheral blood mononuclear cells

PI

Propidium iodide

scFv

Single-chain fragment variable

SD

Standard deviation

TNF-α

Tumor necrosis factor alpha

ULBP

UL16-binding protein

VEGF

Vascular endothelial growth factor

VEGFR2

Vascular endothelial growth factor receptor 2

sMICA

Soluble MICA

mMICA

Membrane MICA

MTT

Methyl thiazolyl tetrazolium

PBS

Phosphate-buffered saline

McAb

Monoclonal antibody

Notes

Acknowledgments

This project was supported by the National Natural Science Foundation of China (NSFC81102364, NSFC81273425 and NSFC81473125), Specialized Research Fund for the Doctoral Program of Higher Education (20130096110007), Jiangsu Province Qinglan Project (2014) and China Scholarship Council, Graduate Student Innovation Project Funded by Huahai Pharmaceutical Co. (CX13S-009HH) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with ethical standards

Conflict of interests

The authors declare no conflict of interests.

References

  1. 1.
    Wang Y, Chen C, Dong F, Ma S, Xu J, Gong Y, et al. NK cells play a significant role in immunosurveillance at the early stage of MLL-AF9 acute myeloid leukemia via CD226/CD155 interactions. Sci China Life Sci. 2015;58:1288–98.CrossRefPubMedGoogle Scholar
  2. 2.
    Fionda C, Soriani A, Zingoni A, Santoni A, Cippitelli M. NKG2D and DNAM-1 ligands: molecular targets for NK cell-mediated immunotherapeutic intervention in multiple myeloma. BioMed Res Int. 2015;2015:178698.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lanier LL. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 2015;3(6):575–82.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Deng W, Gowen BG, Zhang L, Wang L, Lau S, Iannello A, et al. Anti-tumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science (New York, NY). 2015;348(6230):136–9.CrossRefGoogle Scholar
  5. 5.
    Gonzalez-Foruria I, Santulli P, Chouzenoux S, Carmona F, Batteux F, Chapron C. Soluble ligands for the NKG2D receptor are released during endometriosis and correlate with disease severity. PLoS ONE. 2015;10(3):e0119961.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chitadze G, Bhat J, Lettau M, Janssen O, Kabelitz D. Generation of soluble NKG2D ligands: proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol. 2013;78(2):120–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, et al. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother (CII). 2011;60(8):1195–205.CrossRefGoogle Scholar
  8. 8.
    Chen D, Gyllensten U. MICA polymorphism: biology and importance in cancer. Carcinogenesis. 2014;35(12):2633–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Hardan I, Stanevsky A, Volchek Y, Tohami T, Amariglio N, Trakhtenbrot L, et al. Treatment with interferon alpha prior to discontinuation of imatinib in patients with chronic myeloid leukemia. Cytokine. 2012;57(2):290–3.CrossRefPubMedGoogle Scholar
  10. 10.
    Talpaz M, Mercer J, Hehlmann R. The interferon-alpha revival in CML. Ann Hematol. 2015;94(Suppl 2):S195–207.CrossRefPubMedGoogle Scholar
  11. 11.
    Thompson PA, Kantarjian HM, Cortes JE. Diagnosis and treatment of chronic myeloid leukemia in 2015. Mayo Clin Proc. 2015;90(10):1440–54.CrossRefPubMedGoogle Scholar
  12. 12.
    Held SA, Heine A, Mayer KT, Kapelle M, Wolf DG, Brossart P. Advances in immunotherapy of chronic myeloid leukemia CML. Curr Cancer Drug Targets. 2013;13(7):768–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014;2014:357027.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Doan V, Wang A, Prescott H. Bosutinib for the treatment of chronic myeloid leukemia. Am J Health Syst Pharm (AJHP). 2015;72(6):439–47.CrossRefGoogle Scholar
  15. 15.
    Tanizawa A. Optimal management for pediatric chronic myeloid leukemia. Pediatr Int. 2016;58:171–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Millot F, Baruchel A, Guilhot J, Petit A, Leblanc T, Bertrand Y, et al. Imatinib is effective in children with previously untreated chronic myelogenous leukemia in early chronic phase: results of the French national phase IV trial. J Clin Oncol. 2011;29(20):2827–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Jabbour E, Kantarjian H, Cortes J. Use of second- and third-generation tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia: an evolving treatment paradigm. Clin Lymphoma Myeloma Leuk. 2015;15(6):323–34.CrossRefPubMedGoogle Scholar
  18. 18.
    Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96.CrossRefPubMedGoogle Scholar
  19. 19.
    Balabanov S, Braig M, Brummendorf TH. Current aspects in resistance against tyrosine kinase inhibitors in chronic myelogenous leukemia. Drug Discov Today Technol. 2014;11:89–99.CrossRefPubMedGoogle Scholar
  20. 20.
    Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33:4210–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Rea D. Management of adverse events associated with tyrosine kinase inhibitors in chronic myeloid leukemia. Ann Hematol. 2015;94(Suppl 2):S149–58.CrossRefPubMedGoogle Scholar
  22. 22.
    Jain NA, Ito S, Tian X, Kurlander R, Battiwalla M, Lu K, et al. Clinical and biological predictors of outcome following relapse of CML post-allo-SCT. Bone Marrow Transplant. 2015;50(2):189–96.CrossRefPubMedGoogle Scholar
  23. 23.
    Maffei R, Martinelli S, Castelli I, Santachiara R, Zucchini P, Fontana M, et al. Increased angiogenesis induced by chronic lymphocytic leukemia B cells is mediated by leukemia-derived Ang2 and VEGF. Leuk Res. 2010;34(3):312–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Dong X, Han ZC, Yang R. Angiogenesis and anti-angiogenic therapy in hematologic malignancies. Crit Rev Oncol/Hematol. 2007;62(2):105–18.CrossRefGoogle Scholar
  25. 25.
    Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, Alessandro R, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis. 2012;15(1):33–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, et al. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer. 2012;130(9):2033–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Lee JJ, Chung IJ, Park MR, Ryang DW, Park CS, Kim HJ. Increased angiogenesis and Fas-ligand expression are independent processes in acute myeloid leukemia. Leuk Res. 2001;25(12):1067–73.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhou HJ, Wang WQ, Wu GD, Lee J, Li A. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol. 2007;47(2–3):131–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Xie W, Li D, Zhang J, Li Z, Acheampong DO, He Y, et al. Generation and characterization of a novel human IgG1 antibody against vascular endothelial growth factor receptor 2. Cancer Immunol Immunother (CII). 2014;63(9):877–88.CrossRefGoogle Scholar
  30. 30.
    Chen H, Shen YF, Gong F, Yang GH, Jiang YQ, Zhang R. Expression of VEGF and its effect on cell proliferation in patients with chronic myeloid leukemia. Eur Rev Med Pharmacol Sci. 2015;19(19):3569–73.PubMedGoogle Scholar
  31. 31.
    Vidovic A, Jankovic G, Tomin D, Perunicic-Jovanovic M, Djunic I, Djurasinovic V, et al. Prognostic significance of cellular vascular endothelial growth factor (VEGF) expression in the course of chronic myeloid leukaemia. Srp Arh Celok Lek. 2009;137(7–8):379–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Verstovsek S, Lunin S, Kantarjian H, Manshouri T, Faderl S, Cortes J, et al. Clinical relevance of VEGF receptors 1 and 2 in patients with chronic myelogenous leukemia. Leuk Res. 2003;27(7):661–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Kloss S, Chambron N, Gardlowski T, Weil S, Koch J, Esser R, et al. Cetuximab reconstitutes pro-inflammatory cytokine secretions and tumor-infiltrating capabilities of sMICA-inhibited NK cells in HNSCC tumor spheroids. Front Immunol. 2015;6:543.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kloss S, Chambron N, Gardlowski T, Arseniev L, Koch J, Esser R, et al. Increased sMICA and TGFbeta levels in HNSCC patients impair NKG2D-dependent functionality of activated NK cells. Oncoimmunology. 2015;4(11):e1055993.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kong L, Bhatt AR, Demny AB, Coats DK, Li A, Rahman EZ, et al. Pharmacokinetics of bevacizumab and its effects on serum VEGF and IGF-1 in infants with retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2015;56(2):956–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Bogusz J, Majchrzak A, Medra A, Cebula-Obrzut B, Robak T, Smolewski P. Mechanisms of action of the anti-VEGF monoclonal antibody bevacizumab on chronic lymphocytic leukemia cells. Postepy Hig Med Dosw (Online). 2013;67:107–18.CrossRefGoogle Scholar
  37. 37.
    Ossenkoppele GJ, Stussi G, Maertens J, van Montfort K, Biemond BJ, Breems D, et al. Addition of bevacizumab to chemotherapy in acute myeloid leukemia at older age: a randomized phase 2 trial of the Dutch–Belgian Cooperative Trial Group for Hemato-Oncology (HOVON) and the Swiss Group for Clinical Cancer Research (SAKK). Blood. 2012;120(24):4706–11.CrossRefPubMedGoogle Scholar
  38. 38.
    Mehnert JM, McCarthy MM, Jilaveanu L, Flaherty KT, Aziz S, Camp RL, et al. Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays. Hum Pathol. 2010;41(3):375–84.CrossRefPubMedGoogle Scholar
  39. 39.
    Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001;7(5):575–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xueyan Ren
    • 1
  • Wei Xie
    • 1
  • Youfu Wang
    • 1
  • Menghuai Xu
    • 1
  • Fang Liu
    • 1
  • Mingying Tang
    • 1
  • Chenchen Li
    • 1
  • Min Wang
    • 1
    Email author
  • Juan Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingPeople’s Republic of China

Personalised recommendations