Immunologic Research

, Volume 64, Issue 1, pp 171–180 | Cite as

Induction of an antitumor response using dendritic cells transfected with DNA constructs encoding the HLA-A*02:01-restricted epitopes of tumor-associated antigens in culture of mononuclear cells of breast cancer patients

  • Sergey Vital’evich Sennikov
  • Julia Alexandrovna Shevchenko
  • Vasilii Vasil’evich Kurilin
  • Julia Nikolaevna Khantakova
  • Julia Anatol’evna Lopatnikova
  • Elena Vasil’evna Gavrilova
  • Rinat Amirovich Maksyutov
  • Anastasiya Yur’evna Bakulina
  • Sergey Vasil’evich Sidorov
  • Alexander Alexandrovich Khristin
  • Amir Zakievich Maksyutov
Original Article


Advances in oncoimmunology related to the definition of the basic mechanisms of the formation of antitumor immune response, as well as the opening of tumor-associated antigens recognized by immune cells, allowed to start developing ways to influence the effector cells of the immune system to generate effective antitumor cytotoxic response. We investigated the possibility to stimulate an antitumor response in a culture of mononuclear cells of breast cancer patients by dendritic cells transfected with HLA-A*02:01-restricted DNA constructs. We isolated dendritic cells from peripheral blood monocytes and delivered our constructs to these cells by magnetic transfection. Additionally, a series of experiments with loading of dendritic cells with autologous tumor cell lysate antigens was conducted. We have shown that dendritic cells transfected with the HLA-A*02:01-restricted DNA constructs are effective in inducing an antitumor response in a culture of mononuclear cells of breast cancer patients. Dendritic cells transfected with DNA constructor dendritic cells loaded with lysate antigens revealed a comparable stimulated cytotoxic response of mononuclear cells to these two ways of antigen delivery. We conclude that using DNA constructs in conjunction with patient stratification by HLA type allows the application of transfected DCs as an effective method to stimulate antitumor immunity in vitro.


Cytotoxicity Dendritic cells Breast cancer DNA constructs Transfection 



Dendritic cells


Mononuclear cells


Tumor cells


Lactate dehydrogenase


Tumor-associated antigens



This work was supported by the Federal target program “Research and development in priority areas of scientific and technological complex development of Russia for 2014-2020” (Agreement No 14.607.21.0043. The unique identifier for Applied Scientific Research RFMEFI60714X0043). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Compliance with ethical standards

Ethical standard

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.


  1. 1.
    Palucka K, Ueno H, Fay J, Banchereau J. Dendritic cells and immunity against cancer. J Intern Med. 2011;269(1):64–73.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Bei R, Scardino A. TAA polyepitope DNA-based vaccines: a potential tool for cancer therapy. J Biomed Biotechnol. 2010; 102758.Google Scholar
  3. 3.
    Scardino A, Alimandi M, Correale P, Smith SG, Bei R, Firat H, Cusi MG, Faure O, Graf-Dubois S, Cencioni G, Marrocco J, Chouaib S, Lemonnier FA, Jackson AM, Kosmatopoulos K. A polyepitope DNA vaccine targeted to Her-2/ErbB-2 elicits a broad range of human and murine CTL effectors to protect against tumor challenge. Cancer Res. 2007;67(14):7028–36.CrossRefPubMedGoogle Scholar
  4. 4.
    Nakamura M, Iwahashi M, Nakamori M, Ueda K, Ojima T, Naka T, Ishida K, Yamaue H. Dendritic cells transduced with tumor-associated antigen gene elicit potent therapeutic antitumor immunity: comparison with immunodominant peptide-pulsed DCs. Oncology. 2005;68(2–3):163–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Boudreau JE, Bonehill A, Thielemans K, Wan Y. Engineering dendritic cells to enhance cancer immunotherapy. Mol Ther. 2011;19(5):841–53.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16(2):91–102.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Grivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Cell. 2010;140(6):883–99.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Chen KY, Liu J, Ren EC. Structural and functional distinctiveness of HLA-A2 allelic variants. Immunol Res. 2012;53(1–3):182–90.CrossRefPubMedGoogle Scholar
  9. 9.
    Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP, Kraft M, Laplace C, Zwinderman A, Dick TP, Müller J, Schönfisch B, Schmid C, Fehling HJ, Stevanovic S, Rammensee HG, Schild H. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med. 2001;194(1):1–12.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Peters B, Bulik S, Tampe R, Van Endert PM, Holzhütter HG. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol. 2003;171(4):1741–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Antonets DV, Maksiutov AZ. TEpredict: software for T-cell epitope prediction. MolBiol (Mosk). 2010;44(1):130–9.Google Scholar
  12. 12.
    Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 2008;36:509–12.CrossRefGoogle Scholar
  13. 13.
    Bonini C, Lee SP, Riddell SR, Greenberg PD. Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4+ and CD8+ T cells. J Immunol. 2001;166(8):5250–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Livingston BD, Newman M, Crimi C, McKinney D, Chesnut R, Sette A. Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines. Vaccine. 2001;19(32):4652–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Singh H, Raghava GP. ProPred: prediction of HLA-DR binding sites. Bioinformatics. 2001;17(12):1236–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang T, Maekawa Y, Hanba J, Dainichi T, Nashed BF, Hisaeda H, Sakai T, Asao T, Himeno K, Good RA, Katunuma N. Lysosomal cathepsin B plays an important role in antigen processing, while cathepsin D is involved in degradation of the invariant chain in ovalbumin-immunized mice. Immunology. 2000;100(1):13–20.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hsieh CS, deRoos P, Honey K, Beers C, Rudensky AY. A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J Immunol. 2002;168(6):2618–25.CrossRefPubMedGoogle Scholar
  18. 18.
    Fassnacht M, Lee J, Milazzo C, Boczkowski D, Su Z, Nair S, Gilboa E. Induction of CD4(+) and CD8(+) T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy. Clin Cancer Res. 2005;11(15):5566–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340(4):783–95.CrossRefPubMedGoogle Scholar
  20. 20.
    Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med. 1995;182(2):389–400.CrossRefPubMedGoogle Scholar
  21. 21.
    Bonehill A, Heirman C, Tuyaerts S, Michiels A, Breckpot K, Brasseur F, Zhang Y, Van Der Bruggen P, Thielemans K. Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol. 2004;172:6649–57.CrossRefPubMedGoogle Scholar
  22. 22.
    O’Neill DW, Adams S, Bhardwaj N. Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood. 2004;104(8):2235–46.CrossRefPubMedGoogle Scholar
  23. 23.
    Rufer N, Brümmendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med. 1999;190(2):157–67.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA. Perforin: structure, function, and role in human immunopathology. Immunol Rev. 2010;235(1):35–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Pandolfi F, Cianci R, Pagliari D, Casciano F, Bagalà C, Astone A, Landolfi R, Barone C. The immune response to tumors as a tool toward immunotherapy. Clin Dev Immunol. 2011;2011:894704.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Jeras M, Bergant M, Repnik U. In vitro preparation and functional assessment of human monocyte-derived dendritic cells-potential antigen-specific modulators of in vivo immune responses. Transpl Immunol. 2005;14:231–44.CrossRefPubMedGoogle Scholar
  27. 27.
    Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol. 2006;6:383–93.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Kulikova EV, Kurilin VV, Shevchenko JA, Obleukhova IA, Khrapov EA, et al. Dendritic cells transfected with a DNA construct encoding tumour-associated antigen epitopes induce a cytotoxic immune response against autologous tumour cells in a culture of mononuclear cells from colorectal cancer patients. Scand J Immunol. 2015;82(2):110–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sergey Vital’evich Sennikov
    • 1
  • Julia Alexandrovna Shevchenko
    • 1
  • Vasilii Vasil’evich Kurilin
    • 1
  • Julia Nikolaevna Khantakova
    • 1
  • Julia Anatol’evna Lopatnikova
    • 1
  • Elena Vasil’evna Gavrilova
    • 3
  • Rinat Amirovich Maksyutov
    • 3
  • Anastasiya Yur’evna Bakulina
    • 4
  • Sergey Vasil’evich Sidorov
    • 2
  • Alexander Alexandrovich Khristin
    • 1
  • Amir Zakievich Maksyutov
    • 3
  1. 1.Department of Molecular ImmunologyFederal State Budgetary Institution “Research Institute of Fundamental and Clinical Immunology”NovosibirskRussia
  2. 2.3rd Oncological DepartmentCity Clinical Hospital #1Siberian FieldRussia
  3. 3.Vaccine DepartmentAvaxis Biotherapeutics LLCKoltsovoRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations