Advertisement

Immunologic Research

, Volume 62, Issue 3, pp 325–340 | Cite as

A repertoire of high-affinity monoclonal antibodies specific to S. typhi: as potential candidate for improved typhoid diagnostic

  • Chandresh Sharma
  • Anurag Sankhyan
  • Tarang Sharma
  • Naeem Khan
  • Susmita Chaudhuri
  • Niraj Kumar
  • Shinjini Bhatnagar
  • Navin Khanna
  • Ashutosh Tiwari
Article

Abstract

Typhoid fever is a significant global health problem with highest burden on the developing world. The severity of typhoid is often underestimated, and currently available serological diagnostic assays are inadequate due to lack in requisite sensitivity and specificity. This underlines an absolute need to develop a reliable and accurate diagnostics that would benefit long-term disease control and treatment and to understand the real disease burden. Here, we have utilized flagellin protein of S. typhi that is surface accessible, abundantly expressed, and highly immunogenic, for developing immunodiagnostic tests. Flagellin monomers are composed of conserved amino-terminal and carboxy-terminal, and serovar-specific middle region. We have generated a panel of murine monoclonal antibodies (mAbs) against the middle region of flagellin, purified from large culture of S. typhi to ensure its native conformation. These mAbs showed unique specificity and very high affinity toward S. typhi flagellin without showing any cross-reactivity with other serovars. Genetic analysis of mAbs also revealed high frequency of somatic mutation due to antigenic selection process across variable region to achieve high binding affinity. These antibodies also displayed stable binding in stringent reaction conditions for antigen–antibody interactions, like DMSO, urea, KSCN, guanidinium HCl, and extremes of pH. One of the mAbs potentially reversed the TLR5-mediated immune response, in vitro by inhibiting TLR5–flagellin interaction. In our study, binding of these mAbs to flagellin, with high affinity, present on bacterial surface, as well as in soluble form, validates their potential use in developing improved diagnostics with significantly higher sensitivity and specificity.

Keywords

Flagellin S.typhi Typhoid fever Monoclonal antibodies TLR5 Typhoid diagnostics 

Notes

Acknowledgments

The authors gratefully acknowledge Dr. Ayub Qadri (National Institute of Immunology, New Delhi, India) and Dr. Bhabatosh Das (Translational Health Science and Technology Institute), for providing Salmonella strains. This study was supported by grant from Department of Biotechnology, Government of India, to Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute, and the core grant of Translational Health Science and Technology Institute to AT. C S was supported by Innovation Award from Centre for Bio-design and Diagnostics.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in this study involving animals were in accordance with the ethical standards of the institution or practice at the International Centre for Genetic Engineering and Biotechnology, New Delhi, India.

References

  1. 1.
    Bhan MK, Bahl R, Bhatnagar S. Typhoid and paratyphoid fever. Lancet. 2005;366(9487):749–62. doi: 10.1016/S0140-6736(05)67181-4.PubMedCrossRefGoogle Scholar
  2. 2.
    Connor BA, Schwartz E. Typhoid and paratyphoid fever in travellers. Lancet Infect Dis. 2005;5(10):623–8. doi: 10.1016/S1473-3099(05)70239-5.PubMedCrossRefGoogle Scholar
  3. 3.
    Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bull World Health Organ. 2004;82(5):346–53.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Parry CM, Wijedoru L, Arjyal A, Baker S. The utility of diagnostic tests for enteric fever in endemic locations. Expert Rev Anti Infect Ther. 2011;9(6):711–25. doi: 10.1586/eri.11.47.PubMedCrossRefGoogle Scholar
  5. 5.
    Maurice J. A first step in bringing typhoid fever out of the closet. Lancet. 2012;379(9817):699–700.PubMedCrossRefGoogle Scholar
  6. 6.
    Sinha A, Sazawal S, Kumar R, Sood S, Reddaiah VP, Singh B, et al. Typhoid fever in children aged less than 5 years. Lancet. 1999;354(9180):734–7. doi: 10.1016/S0140-6736(98)09001-1.PubMedCrossRefGoogle Scholar
  7. 7.
    Brooks WA, Hossain A, Goswami D, Nahar K, Alam K, Ahmed N, et al. Bacteremic typhoid fever in children in an urban slum, Bangladesh. Emerg Infect Dis. 2005;11(2):326–9. doi: 10.3201/eid1102.040422.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Siddiqui FJ, Rabbani F, Hasan R, Nizami SQ, Bhutta ZA. Typhoid fever in children: some epidemiological considerations from Karachi, Pakistan. Int J Infect Dis. 2006;10(3):215–22. doi: 10.1016/j.ijid.2005.03.010.PubMedCrossRefGoogle Scholar
  9. 9.
    Gasem MH, Dolmans WM, Keuter MM, Djokomoeljanto RR. Poor food hygiene and housing as risk factors for typhoid fever in Semarang, Indonesia. Trop Med Int Health. 2001;6(6):484–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Ram PK, Naheed A, Brooks WA, Hossain MA, Mintz ED, Breiman RF, et al. Risk factors for typhoid fever in a slum in Dhaka, Bangladesh. Epidemiol Infect. 2007;135(3):458–65. doi: 10.1017/S0950268806007114.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    House D, Bishop A, Parry C, Dougan G, Wain J. Typhoid fever: pathogenesis and disease. Curr Opin Infect Dis. 2001;14(5):573–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J Med. 2002;347(22):1770–82. doi: 10.1056/NEJMra020201.PubMedCrossRefGoogle Scholar
  13. 13.
    World Health Organization. Background document: the diagnosis, treatment and prevention of typhoid fever. World Health Organization; 2003. http://www.who.int/immunization/documents/WHO_VB_03.07/en/. Accessed 06 Dec 2012.
  14. 14.
    Peacock SJ, Newton PN. Public health impact of establishing the cause of bacterial infections in rural Asia. Trans R Soc Trop Med Hyg. 2008;102(1):5–6. doi: 10.1016/j.trstmh.2007.06.004.PubMedCrossRefGoogle Scholar
  15. 15.
    Widal F. Serodiagnostique de la fievre typhoid. Semaine Med. 1896;16:259.Google Scholar
  16. 16.
    Hatta M, Goris MG, Heerkens E, Gooskens J, Smits HL. Simple dipstick assay for the detection of Salmonella typhi-specific IgM antibodies and the evolution of the immune response in patients with typhoid fever. Am J Trop Med Hyg. 2002;66(4):416–21.PubMedGoogle Scholar
  17. 17.
    Cooper GL, Nicholas RA, Bracewell CD. Serological and bacteriological investigations of chickens from flocks naturally infected with Salmonella enteritidis. Vet Rec. 1989;125(23):567–72.PubMedGoogle Scholar
  18. 18.
    Nicholas RA, Cullen GA. Development and application of an ELISA for detecting antibodies to Salmonella enteritidis in chicken flocks. Vet Rec. 1991;128(4):74–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Timoney JF, Sikora N, Shivaprasad HL, Opitz M. Detection of antibody to Salmonella enteritidis by a gm flagellin-based ELISA. Vet Rec. 1990;127(7):168–9.PubMedGoogle Scholar
  20. 20.
    Jesudason MV, Sivakumar S. Prospective evaluation of a rapid diagnostic test Typhidot for typhoid fever. Indian J Med Res. 2006;123(4):513–6.PubMedGoogle Scholar
  21. 21.
    Preechakasedkit P, Pinwattana K, Dungchai W, Siangproh W, Chaicumpa W, Tongtawe P, et al. Development of a one-step immunochromatographic strip test using gold nanoparticles for the rapid detection of Salmonella typhi in human serum. Biosens Bioelectron. 2012;31(1):562–6. doi: 10.1016/j.bios.2011.10.031.PubMedCrossRefGoogle Scholar
  22. 22.
    Kerr S, Ball HJ, Mackie DP, Pollock DA, Finlay DA. Diagnostic application of monoclonal antibodies to outer membrane protein for rapid detection of Salmonella. J Appl Bacteriol. 1992;72(4):302–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Brigmon RL, Zam SG, Wilson HR. Detection of Salmonella enteritidis in eggs and chicken with enzyme-linked immunosorbent assay. Poult Sci. 1995;74(7):1232–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Blais BW, Martinez-Perez A. Detection of group D Salmonellae including Salmonella enteritidis in eggs by polymyxin-based enzyme-linked immunosorbent assay. J Food Prot. 2008;71(2):392–6.PubMedGoogle Scholar
  25. 25.
    Iino T, Komeda Y, Kutsukake K, Macnab RM, Matsumura P, Parkinson JS, et al. New unified nomenclature for the flagellar genes of Escherichia coli and Salmonella typhimurium. Microbiol Rev. 1988;52(4):533–5.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Donnelly MA, Steiner TS. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J Biol Chem. 2002;277(43):40456–61. doi: 10.1074/jbc.M206851200.PubMedCrossRefGoogle Scholar
  27. 27.
    Khan MA, Kang J, Steiner TS. Enteroaggregative Escherichia coli flagellin-induced interleukin-8 secretion requires Toll-like receptor 5-dependent p38 MAP kinase activation. Immunology. 2004;112(4):651–60. doi: 10.1111/j.1365-2567.2004.01923.x.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    de Vries N, Zwaagstra KA, Huis in’t Veld JH, van Knapen F, van Zijderveld FG, Kusters JG. Production of monoclonal antibodies specific for the i and 1,2 flagellar antigens of Salmonella typhimurium and characterization of their respective epitopes. Appl Environ Microbiol. 1998;64(12):5033–8.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Wei LN, Joys TM. Covalent structure of three phase-1 flagellar filament proteins of Salmonella. J Mol Biol. 1985;186(4):791–803.PubMedCrossRefGoogle Scholar
  30. 30.
    Newton SM, Wasley RD, Wilson A, Rosenberg LT, Miller JF, Stocker BA. Segment IV of a Salmonella flagellin gene specifies flagellar antigen epitopes. Mol Microbiol. 1991;5(2):419–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Subramanian N, Qadri A. Lysophospholipid sensing triggers secretion of flagellin from pathogenic salmonella. Nat Immunol. 2006;7(6):583–9. doi: 10.1038/ni1336.PubMedCrossRefGoogle Scholar
  32. 32.
    Das B, Kumari R, Pant A, Sen Gupta S, Saxena S, Mehta O, et al. A novel, broad-range, CTXPhi-derived stable integrative expression vector for functional studies. J Bacteriol. 2014;196(23):4071–80. doi: 10.1128/JB.01966-14.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol. 2003;4(12):1247–53. doi: 10.1038/ni1011.PubMedCrossRefGoogle Scholar
  34. 34.
    Tiwari A, Dutta D, Khanna N, Acharya SK, Sinha S. Generation and characterization of high affinity humanized fab against hepatitis B surface antigen. Mol Biotechnol. 2009;43(1):29–40. doi: 10.1007/s12033-009-9165-9.PubMedCrossRefGoogle Scholar
  35. 35.
    Tiwari A, Khanna N, Acharya SK, Sinha S. Humanization of high affinity anti-HBs antibody by using human consensus sequence and modification of selected minimal positional template and packing residues. Vaccine. 2009;27(17):2356–66. doi: 10.1016/j.vaccine.2009.02.019.PubMedCrossRefGoogle Scholar
  36. 36.
    Brochet X, Lefranc MP, Giudicelli V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucl Acids Res. 2008;36(Web Server issue):W503–8. doi: 10.1093/nar/gkn316.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    West B, Richens JE, Howard PF. Evaluation in Papua New Guinea of a urine coagglutination test and a Widal slide agglutination test for rapid diagnosis of typhoid fever. Trans R Soc Trop Med Hyg. 1989;83(5):715–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Banchuin N, Appassakij H, Sarasombath S, Manatsathit S, Rungpitarangsi B, Komolpit P, et al. Detection of Salmonella typhi protein antigen in serum and urine: a value for diagnosis of typhoid fever in an endemic area. Asian Pac J Allergy Immunol. 1987;5(2):155–9.PubMedGoogle Scholar
  39. 39.
    Chaicumpa W, Ruangkunaporn Y, Burr D, Chongsa-Nguan M, Echeverria P. Diagnosis of typhoid fever by detection of Salmonella typhi antigen in urine. J Clin Microbiol. 1992;30(9):2513–5.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Fadeel MA, Crump JA, Mahoney FJ, Nakhla IA, Mansour AM, Reyad B, et al. Rapid diagnosis of typhoid fever by enzyme-linked immunosorbent assay detection of Salmonella serotype typhi antigens in urine. Am J Trop Med Hyg. 2004;70(3):323–8.PubMedGoogle Scholar
  41. 41.
    Ibrahim GF, Fleet GH, Lyons MJ, Walker RA. Method for the isolation of highly purified Salmonella flagellins. J Clin Microbiol. 1985;22(6):1040–4.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Sukosol T, Sarasombath S, Mongkolsuk S, Songsivilai S, Chaiyaroj S, Pongsunk S, et al. Molecular cloning and expression of Salmonella typhi flagellin: characterization of 52 kDa specific antigen of S. typhi. Asian Pac J Allergy Immunol. 1993;11(1):57–69.PubMedGoogle Scholar
  43. 43.
    Nempont C, Cayet D, Rumbo M, Bompard C, Villeret V, Sirard JC. Deletion of flagellin’s hypervariable region abrogates antibody-mediated neutralization and systemic activation of TLR5-dependent immunity. J Immunol. 2008;181(3):2036–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Hiriart Y, Errea A, Maciel DG, Lopez JC, Rumbo M. A method for the purification of bacterial flagellin that allows simple upscaling. World J Microbiol Biotechnol. 2012;28(1):15–21. doi: 10.1007/s11274-011-0786-3.PubMedCrossRefGoogle Scholar
  45. 45.
    Mitra R, Bhan S, Nath G, Kumar N, Ali Z. Development of a novel rapid immunodiagnostic kit based on flagellar 40 kDa antigen epitope for the detection of typhoid fever in Indian patients. Sci World J. 2013;2013:363652. doi: 10.1155/2013/363652.CrossRefGoogle Scholar
  46. 46.
    Sadallah F, Brighouse G, Del Giudice G, Drager-Dayal R, Hocine M, Lambert PH. Production of specific monoclonal antibodies to Salmonella typhi flagellin and possible application to immunodiagnosis of typhoid fever. J Infect Dis. 1990;161(1):59–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Hiriart Y, Serradell M, Martinez A, Sampaolesi S, Maciel DG, Chabalgoity JA, et al. Generation and selection of anti-flagellin monoclonal antibodies useful for serotyping Salmonella enterica. SpringerPlus. 2013;2:640. doi: 10.1186/2193-1801-2-640.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Sukosol T, Sarasombath S, Songsivilai S, Ekpo P, Rungpitarangsi B, Pang T. Fusion protein of Salmonella typhi flagellin as antigen for diagnosis of typhoid fever. Asian Pac J Allergy Immunol. 1994;12(1):21–5.PubMedGoogle Scholar
  49. 49.
    Malapaka RR, Adebayo LO, Tripp BC. A deletion variant study of the functional role of the Salmonella flagellin hypervariable domain region in motility. J Mol Biol. 2007;365(4):1102–16. doi: 10.1016/j.jmb.2006.10.054.PubMedCrossRefGoogle Scholar
  50. 50.
    Mizumoto N, Toyota-Hanatani Y, Sasai K, Tani H, Ekawa T, Ohta H, et al. Detection of specific antibodies against deflagellated Salmonella enteritidis and S. enteritidis FliC-specific 9 kDa polypeptide. Vet Microbiol. 2004;99(2):113–20. doi: 10.1016/j.vetmic.2003.11.009.PubMedCrossRefGoogle Scholar
  51. 51.
    Yap LF, Low S, Liu W, Loh H, Teo TP, Kwang J. Detection and screening of Salmonella enteritidis-infected chickens with recombinant flagellin. Avian Dis. 2001;45(2):410–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Perera K, Murray A. Development of an indirect ELISA for the detection of serum IgG antibodies against region IV of phase 1 flagellin of Salmonella enterica serovar Brandenburg in sheep. J Med Microbiol. 2009;58(Pt 12):1576–81. doi: 10.1099/jmm.0.010090-0.PubMedCrossRefGoogle Scholar
  53. 53.
    Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Bose B, Sinha S. Problems in using statistical analysis of replacement and silent mutations in antibody genes for determining antigen-driven affinity selection. Immunology. 2005;116(2):172–83. doi: 10.1111/j.1365-2567.2005.02208.x.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099–103. doi: 10.1038/35074106.PubMedCrossRefGoogle Scholar
  56. 56.
    Smith MF Jr, Mitchell A, Li G, Ding S, Fitzmaurice AM, Ryan K, et al. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J Biol Chem. 2003;278(35):32552–60. doi: 10.1074/jbc.M305536200.PubMedCrossRefGoogle Scholar
  57. 57.
    Huang LY, Dumontelle JL, Zolodz M, Deora A, Mozier NM, Golding B. Use of toll-like receptor assays to detect and identify microbial contaminants in biological products. J Clin Microbiol. 2009;47(11):3427–34. doi: 10.1128/JCM.00373-09.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA, et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol. 2008;9(10):1171–8. doi: 10.1038/ni.1646.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Stecher B, Hapfelmeier S, Muller C, Kremer M, Stallmach T, Hardt WD. Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun. 2004;72(7):4138–50. doi: 10.1128/IAI.72.7.4138-4150.2004.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR, et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest. 2004;113(9):1296–306. doi: 10.1172/JCI20295.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chandresh Sharma
    • 1
  • Anurag Sankhyan
    • 1
  • Tarang Sharma
    • 1
  • Naeem Khan
    • 2
  • Susmita Chaudhuri
    • 1
  • Niraj Kumar
    • 1
  • Shinjini Bhatnagar
    • 3
  • Navin Khanna
    • 4
  • Ashutosh Tiwari
    • 1
  1. 1.Centre for Bio-design and DiagnosticsTranslational Health Science and Technology InstituteFaridabadIndia
  2. 2.National Institute of ImmunologyNew DelhiIndia
  3. 3.Pediatric Biology CenterTranslational Health Science and Technology InstituteFaridabadIndia
  4. 4.International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia

Personalised recommendations