Immunologic Research

, Volume 62, Issue 3, pp 255–262 | Cite as

Enhanced expression of trim14 gene suppressed Sindbis virus reproduction and modulated the transcription of a large number of genes of innate immunity

  • V. V. NenashevaEmail author
  • G. V. Kovaleva
  • L. V. Uryvaev
  • K. S. Ionova
  • A. V. Dedova
  • G. K. Vorkunova
  • S. V. Chernyshenko
  • N. V. Khaidarova
  • V. Z. Tarantul


In the present research, we have studied an influence of enhanced expression TRIM14 on alphavirus Sindbis (SINV, Togaviridae family) infection. In the HEK293 cells transfected with human trim14 gene (HEK–trim14), SINV yield after infection was decreased 1000–10,000 times (3–4 lg of TCD50/ml) at 24 h p.i. and considerably less (1–2 lg of TCD50/ml) at 48 h p.i. Analysis of the expression of 43 genes directly or indirectly involved in innate immune machine in HEK–trim14 non-infected cells comparing with the control (non-transfected) HEK293 cells revealed that stable trim14 transfection in HEK293 cells caused increased transcription of 18 genes (ifna, il6 (ifnβ2), isg15, raf-1, NF-kB (nf-kb1, rela, nf-kb2, relb), grb2, grb3-3, traf3ip2, junB, c-myb, pu.1, akt1, tyk2, erk2, mek2) and lowered transcription of 3 genes (ifnγ, gata1, il-17a). The similar patterns of genes expression observe in SINV-infected non-transfected HEK293 cells. However, SINV infection of HEK–trim14 cells caused inhibition of the most interferon cascade genes as well as subunits of transcription factor NF-κB. Thus, stable enhanced expression of trim14 gene in cells activates the transcription of many immunity genes and suppresses the SINV reproduction, but SINV infection of HEK–trim14 cells promotes inhibition of some genes involved in innate immune system.


TRIM14 Alphavirus Sindbis Antiviral defense Innate immunity genes 



This study was supported by Grant Numbers 13-04-00598 and 15-04-07752 from the Russian Foundation for Basic Research and grant for Molecular and Cellular Biology from Russian Academy of Sciences.

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Supplementary material

12026_2015_8653_MOESM1_ESM.doc (76 kb)
Supplementary material 1 (DOC 75 kb)


  1. 1.
    Kawai T, Akira S. Regulation of innate immune signaling pathways by 542 the tripartite motif (TRIM) family proteins. EMBO Mol Med. 2011;3:513–27.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    McNab FW, Rajsbaum R, Stoye JP, O’Garra A. Tripartite-motif proteins and innate immune regulation. Curr Opin Immunol. 2011;23:46–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Nisole S, Stoye JP, Saib A. TRIM family proteins: retroviral restriction and animal defence. Nat Rev Microbiol. 2005;3:799–808.PubMedCrossRefGoogle Scholar
  4. 4.
    Towers GJ. Control of viral infectivity by tripartite motif proteins. Hum Gene Ther. 2005;16:1125–32.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-1-mediated antiviral activity. Nature. 2007;446:916–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Everett RD, Chelbi-Alex MK. PML and PML nuclear bodies: implications in antiviral defense. Biochimie. 2007;89:819–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Ozato K, Shin DM, Chang TH, Morse HC 3rd. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol. 2008;8:849–60.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Munir M. TRIM proteins: another class of viral victims. Sci Signal. 2010;3:jc2.PubMedGoogle Scholar
  9. 9.
    Wang J, Liu B, Wang N, Lee YM, Liu C, Li K. TRIM56 is a virus and interferon inducible E3 ubiquitin ligase that restricts pestivirus infection. J Virol. 2011;85:3733–45.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Grütter MG, Luban J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol. 2012;2:142–50.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Tarantul VZ, Nikolaev AI, Martynenko A, Hannig H, Hunsmann G, Bodemer W. Differential gene expression in B-cell non-Hodgkin’s lymphoma of SIV-infected monkey. AIDS Res Hum Retroviruses. 2000;16:173–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Nenasheva V, Maksimov V, Nikolaev A, Tarantul V. Comparative analysis of the level of gene transcription in two types of HIV-associated lymphoma. Mol Gen Mikrobiol Virusol. 2001;4:27–31.PubMedGoogle Scholar
  13. 13.
    Nenasheva VV, Nikolaev AI, Martynenko AV, Kaplanskaya IB, Bodemer W, Hunsmann G, et al. Differential gene expression in HIV/SIV-associated and spontaneous lymphomas. Int J Med Sci. 2005;2:122–8.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Choi JH, Choi BS, Kim SS, Lee JS, et al. Differentially expressed cellular gene profiles between healthy HIV-infected Koreans and AIDS patients. Korean J Hematol. 2007;42:33–42.CrossRefGoogle Scholar
  15. 15.
    Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog. 2008;4:e16.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Uchil PD, Hinz A, Siegel S, Coenen-Stass A, Pertel T, Luban J, et al. TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity. J Virol. 2013;87:257–72.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Metz P, Dazert E, Ruggieri A, Mazur J, Kaderali L, Kaul A, et al. Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology. 2012;56:2082–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhou Z, Jia X, Xue Q, Dou Z, Ma Y, Zhao Z, et al. TRIM14 is a mitochondrial adaptor that facilitates retinoic acid-inducible gene-I-like receptor-mediated innate immune response. Proc Natl Acad Sci USA. 2014;111:E245–54.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ramilo O, Allman W, Chung W, Mejias A, Ardura M, Glaser C, et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 2007;109:2066–77.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA. 2002;99:15669–74.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Chen Y, Hamati E, Lee PK, Lee WM, Wachi S, Schnurr D, et al. Rhinovirus induces airway epithelial gene expression through double-stranded RNA and IFN-dependent pathways. Am J Respir Cell Mol Biol. 2006;34:192–203.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lvov DK, Uryvaev LV. Togaviruses. In: Lvov DK, editor. Manual of medical virology. Moscow: Medical Informational Agency; 2008. p. 217–24 (Russian).Google Scholar
  23. 23.
    Uryvaev LV, Vasilenko VA, Parasjuk NA, Ionova KS, Gushchina EA, Kullapere AA, et al. Isolation and identification Sindbis virus from migratory birds in Estonia. Probl Virol. 1992;1:67–74.Google Scholar
  24. 24.
    Uryvaev LV, Dedova AV, Dedova LV, Ionova KS, Parasjuk NA, Selivanova TK, et al. Contamination of cell cultures with bovine viral diarrhea virus (BVDV). Bull Exp Biol Med. 2012;53:77–81.CrossRefGoogle Scholar
  25. 25.
    Nenasheva VV, Kovaleva GV, Khaidarova NV, Novosadova EV, Manuilova ES, Antonov SA, et al. Trim14 overexpression causes the same transcriptional changes in mouse embryonic stem cells and human HEK293 cells. In Vitro Cell Dev Biol Anim. 2014;50:121–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Griffin DE. The alphaviruses. In: Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 1023–67.Google Scholar
  27. 27.
    Yin J, Gardner CL, Burke CW, Ryman KD, Klimstra WB, et al. Similarities and differences in antagonism of neuron alpha/beta interferon responses by Venezuelan equine encephalitis and Sindbis alphaviruses. J Virol. 2009;83:10036–47.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Després P, Griffin JW, Griffin DE. Antiviral activity of alpha interferon in Sindbis virus-infected cells is restored by anti-E2 monoclonal antibody treatment. J Virol. 1995;69:7345–8.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Czarniecki CW, Allen PT. Disparate response of encephalomyocarditis virus and MM virus to interferon in JLS-V9R cells. Antivir Res. 1984;4:351–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Grieder FB, Vogel SN. Role of interferon and IFN regulatory factors in early protection against VEE virus infection. Virology. 1999;257:106–18.PubMedCrossRefGoogle Scholar
  31. 31.
    Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011;13:11–22.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Bonadies N, Neururer Ch, Steege A, Vallabhapurapu S, Pabst T, Mueller BU. PU.1 is regulated by NF-κB through a novel binding site in a 17 kb upstream enhancer element NF-κB regulates PU.1 through a distal element. Oncogene. 2010;29:1062–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Rehli M, Poltorak A, Schwarzfischer L, Krause SW, Andreesen R, Beutler B. PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J Biol Chem. 2000;275:9773–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Hirano T. Interleukin 6 and its receptor: ten years later. Int Rev Immunol. 1998;16:249–84.PubMedCrossRefGoogle Scholar
  35. 35.
    Baccarini M. Second nature: biological functions of the Raf-1 “kinase”. FEBS Lett. 2005;579:3271–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Li X. Act1 modulates autoimmunity through its dual functions in CD40L/BAFF and IL-17 signaling. Cytokine. 2008;41:105–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Cheng J, Phong B, Wilson DC, Hirsch R, Kane LP. Akt fine-tunes NF-κB-dependent gene expression during T cell activation. J Biol Chem. 2011;286:36076–85.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6:24–37.PubMedCrossRefGoogle Scholar
  39. 39.
    Marcus PI, Fuller FJ. Interferon induction by viruses. II. Sindbis virus: interferon induction requires one-quarter of the genome-genes G and A. J Gen Virol. 1979;44:169–77.PubMedCrossRefGoogle Scholar
  40. 40.
    Hidmark AS, McInerney GM, Nordstrom EK, Douagi I, Werner KM, Liljeström P, et al. Early alpha/beta interferon production by myeloid dendritic cells in response to UV-inactivated virus requires viral entry and interferon regulatory factor 3 but not MyD88. JVirol. 2005;79:10376–85.CrossRefGoogle Scholar
  41. 41.
    Iwasaki A, Medzhitov R. Innate responses to viral infections. In: Knipe DM, Howley PM, editors. Fields Virology. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 189–213.Google Scholar
  42. 42.
    Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O’Guin AK, Schmidt RE, et al. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol. 2005;79:13974–83.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Breakwell L, Dosenovic P, Karlsson Hedestram GB, D’Amato M, Liljeström P, Fazakerley J, et al. SFV nsP2 protein is involved in suppression of type I IFN response. J Virol. 2007;81:8677–84.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Gorchakov R, Frolova E, Frolov I. Inhibition of transcription and translation in Sindbis virus-infected cells. J Virol. 2005;79:9397–409.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. V. Nenasheva
    • 1
    Email author
  • G. V. Kovaleva
    • 1
  • L. V. Uryvaev
    • 2
  • K. S. Ionova
    • 2
  • A. V. Dedova
    • 2
  • G. K. Vorkunova
    • 2
  • S. V. Chernyshenko
    • 3
  • N. V. Khaidarova
    • 1
  • V. Z. Tarantul
    • 1
  1. 1.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.The D.I. Ivanovsky’s Institute of VirologyMinistry of Health, RussiaMoscowRussia
  3. 3.Koblenz-Landau UniversityKoblenzGermany

Personalised recommendations