Immunologic Research

, Volume 62, Issue 2, pp 198–212 | Cite as

Epithelial-specific ETS-1 (ESE1/ELF3) regulates apoptosis of intestinal epithelial cells in ulcerative colitis via accelerating NF-κB activation

  • Liren Li
  • Xianjing Miao
  • Runzhou Ni
  • Xiaobing Miao
  • Liang Wang
  • Xiaodan Gu
  • Lijun Yan
  • Qiyun TangEmail author
  • Dongmei ZhangEmail author


Epithelial-specific ETS-1 (ESE1), also named as ELF3, ERT and ESX, belonging to the ETS family of transcription factors, exerts multiple activities in inflammation, epithelial differentiation and cancer development. Previous data demonstrated that ESE1 synergizes with NF-κB to induce inflammation and drive tumor progress, and the nuclear translocation of ESE1 promotes colon cells apoptosis. However, the expression and biological functions of ESE1 in ulcerative colitis (UC) remain unclear. In this study, we reported for the first time that ESE1/ELF3 was over-expressed in intestinal epithelial cells (IECs) of patients with UC. In DSS-induced colitis mouse models, we observed the up-regulation of ESE1/ELF3 accompanied with the elevated levels of IEC apoptotic markers (active caspase-3 and cleaved PARP) and NF-κB activation indicators [phosphorylated NF-κB p65 subunit (p-p65) and p-IκB] in colitis IECs. Increased co-localization of ESE1/ELF3 with active caspase-3 (and p-p65) in IECs of the DSS-induced colitis group further indicated the possible involvement of ESE1/ELF3 in NF-κB-mediated IEC apoptosis in UC. Employing the TNF-α-treated HT-29 cells as an IEC apoptosis model, we confirmed the positive correlation of ESE1/ELF3 with NF-κB activation and caspase-dependent IEC apoptosis in vitro. Immunoprecipitation and immunofluorescence assay revealed the physical interaction and increased nuclear translocation of ESE1/ELF3 and the NF-κB p65 subunit in TNF-α-treated HT-29 cells. Knocking ESE1/ELF3 down by siRNA significantly alleviated TNF-α-induced NF-κB activation and cellular apoptosis in HT-29 cells. Taken together, our data suggested that ESE1/ELF3 may promote the UC progression via accelerating NF-κB activation and thus facilitating IEC apoptosis.


Ulcerative colitis Epithelial-specific ETS-1 Intestinal epithelial cell Apoptosis 



This work was supported by National Basic Research Program of China (973 Program, No. 2012CB822104); National Natural Science Foundation of China (81201252, 81470806, 81171140, 81472272); Nantong City Social Development Projects funds (HS2012032); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); the Natural Science Foundation of Jiangsu Province Grant (BK20141496).


  1. 1.
    Christophi GP, Rong R, Holtzapple PG, Massa PT, Landas SK. Immune markers and differential signaling networks in ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 2012;18(12):2342–56. doi: 10.1002/ibd.22957.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Sohn JJ, Schetter AJ, Yfantis HG, Ridnour LA, Horikawa I, Khan MA, et al. Macrophages, nitric oxide and microRNAs are associated with DNA damage response pathway and senescence in inflammatory bowel disease. PLoS One. 2012;7(9):e44156. doi: 10.1371/journal.pone.0044156.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Lichtenberger GS, Flavell RA, Alexopoulou L. Innate immunity and apoptosis in IBD. Inflamm Bowel Dis. 2004;10(Suppl 1):S58–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Zampeli E, Gizis M, Siakavellas SI, Bamias G. Predictors of response to anti-tumor necrosis factor therapy in ulcerative colitis. World J Gastrointest Pathophysiol. 2014;5(3):293–303. doi: 10.4291/wjgp.v5.i3.293.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8(6):458–66. doi: 10.1038/nri2340.CrossRefPubMedGoogle Scholar
  6. 6.
    Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2014;. doi: 10.1007/s00281-014-0454-4.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Wallace KL, Zheng LB, Kanazawa Y, Shih DQ. Immunopathology of inflammatory bowel disease. WJG. 2014;20(1):6–21. doi: 10.3748/wjg.v20.i1.6.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Sipos F, Molnar B, Zagoni T, Berczi L, Tulassay Z. Growth in epithelial cell proliferation and apoptosis correlates specifically to the inflammation activity of inflammatory bowel diseases: ulcerative colitis shows specific p53- and EGFR expression alterations. Dis Colon Rectum. 2005;48(4):775–86. doi: 10.1007/s10350-004-0831-5.CrossRefPubMedGoogle Scholar
  9. 9.
    Koch S, Nusrat A. The life and death of epithelia during inflammation: lessons learned from the gut. Ann Rev Pathol. 2012;7:35–60. doi: 10.1146/annurev-pathol-011811-120905.CrossRefGoogle Scholar
  10. 10.
    Wang H, Fang R, Cho JY, Libermann TA, Oettgen P. Positive and negative modulation of the transcriptional activity of the ETS factor ESE-1 through interaction with p300, CREB-binding protein, and Ku 70/86. J Biol Chem. 2004;279(24):25241–50. doi: 10.1074/jbc.M401356200.CrossRefPubMedGoogle Scholar
  11. 11.
    Brown C, Gaspar J, Pettit A, Lee R, Gu X, Wang H, et al. ESE-1 is a novel transcriptional mediator of angiopoietin-1 expression in the setting of inflammation. J Biol Chem. 2004;279(13):12794–803. doi: 10.1074/jbc.M308593200.CrossRefPubMedGoogle Scholar
  12. 12.
    Oettgen P, Alani RM, Barcinski MA, Brown L, Akbarali Y, Boltax J, et al. Isolation and characterization of a novel epithelium-specific transcription factor, ESE-1, a member of the ets family. Mol Cell Biol. 1997;17(8):4419–33.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Tymms MJ, Ng AY, Thomas RS, Schutte BC, Zhou J, Eyre HJ, et al. A novel epithelial-expressed ETS gene, ELF3: human and murine cDNA sequences, murine genomic organization, human mapping to 1q32.2 and expression in tissues and cancer. Oncogene. 1997;15(20):2449–62. doi: 10.1038/sj.onc.1201427.CrossRefPubMedGoogle Scholar
  14. 14.
    Oliver JR, Kushwah R, Hu J. Multiple roles of the epithelium-specific ETS transcription factor, ESE-1, in development and disease. Lab Investig. 2012;92(3):320–30. doi: 10.1038/labinvest.2011.186.CrossRefPubMedGoogle Scholar
  15. 15.
    Seth A, Watson DK. ETS transcription factors and their emerging roles in human cancer. Eur J Cancer. 2005;41(16):2462–78. doi: 10.1016/j.ejca.2005.08.013.CrossRefPubMedGoogle Scholar
  16. 16.
    Findlay VJ, LaRue AC, Turner DP, Watson PM, Watson DK. Understanding the role of ETS-mediated gene regulation in complex biological processes. Adv Cancer Res. 2013;119:1–61. doi: 10.1016/B978-0-12-407190-2.00001-0.CrossRefPubMedGoogle Scholar
  17. 17.
    Seidel JJ, Graves BJ. An ERK2 docking site in the pointed domain distinguishes a subset of ETS transcription factors. Genes Dev. 2002;16(1):127–37. doi: 10.1101/gad.950902.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Reddy SP, Vuong H, Adiseshaiah P. Interplay between proximal and distal promoter elements is required for squamous differentiation marker induction in the bronchial epithelium: role for ESE-1, Sp1, and AP-1 proteins. J Biol Chem. 2003;278(24):21378–87. doi: 10.1074/jbc.M212258200.CrossRefPubMedGoogle Scholar
  19. 19.
    Rudders S, Gaspar J, Madore R, Voland C, Grall F, Patel A, et al. ESE-1 is a novel transcriptional mediator of inflammation that interacts with NF-kappa B to regulate the inducible nitric-oxide synthase gene. J Biol Chem. 2001;276(5):3302–9. doi: 10.1074/jbc.M006507200.CrossRefPubMedGoogle Scholar
  20. 20.
    Yoshida N, Yoshida S, Araie M, Handa H, Nabeshima Y. Ets family transcription factor ESE-1 is expressed in corneal epithelial cells and is involved in their differentiation. Mech Dev. 2000;97(1–2):27–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Longoni N, Sarti M, Albino D, Civenni G, Malek A, Ortelli E, et al. ETS transcription factor ESE1/ELF3 orchestrates a positive feedback loop that constitutively activates NF-kappaB and drives prostate cancer progression. Cancer Res. 2013;73(14):4533–47. doi: 10.1158/0008-5472.CAN-12-4537.CrossRefPubMedGoogle Scholar
  22. 22.
    Wu J, Duan R, Cao H, Field D, Newnham CM, Koehler DR, et al. Regulation of epithelium-specific Ets-like factors ESE-1 and ESE-3 in airway epithelial cells: potential roles in airway inflammation. Cell Res. 2008;18(6):649–63. doi: 10.1038/cr.2008.57.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee SH, Bahn JH, Choi CK, Whitlock NC, English AE, Safe S, et al. ESE-1/EGR-1 pathway plays a role in tolfenamic acid-induced apoptosis in colorectal cancer cells. Mol Cancer Ther. 2008;7(12):3739–50. doi: 10.1158/1535-7163.MCT-08-0548.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Koch S, Capaldo CT, Hilgarth RS, Fournier B, Parkos CA, Nusrat A. Protein kinase CK2 is a critical regulator of epithelial homeostasis in chronic intestinal inflammation. Mucosal Immunol. 2013;6(1):136–45. doi: 10.1038/mi.2012.57.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Nava P, Koch S, Laukoetter MG, Lee WY, Kolegraff K, Capaldo CT, et al. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity. 2010;32(3):392–402. doi: 10.1016/j.immuni.2010.03.001.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Koch S, Nava P, Addis C, Kim W, Denning TL, Li L, et al. The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair. Gastroenterology. 2011;141(1):259-68, 68 e1-8. doi: 10.1053/j.gastro.2011.03.043.
  27. 27.
    Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182(5):1281–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu Y, Chen Y, Lu X, Wang Y, Duan Y, Cheng C, et al. SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway. Mol Biol Cell. 2012;23(23):4506–14. doi: 10.1091/mbc.E12-05-0362.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98(3):694–702.PubMedGoogle Scholar
  30. 30.
    Xia XM, Wang FY, Zhou J, Hu KF, Li SW, Zou BB. CXCR4 antagonist AMD3100 modulates claudin expression and intestinal barrier function in experimental colitis. PLoS ONE. 2011;6(11):e27282. doi: 10.1371/journal.pone.0027282.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Prescott JD, Koto KS, Singh M, Gutierrez-Hartmann A. The ETS transcription factor ESE-1 transforms MCF-12A human mammary epithelial cells via a novel cytoplasmic mechanism. Mol Cell Biol. 2004;24(12):5548–64. doi: 10.1128/MCB.24.12.5548-5564.2004.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Zhan Y, Yuan L, Kondo M, Oettgen P. The counter-regulatory effects of ESE-1 during angiotensin II-mediated vascular inflammation and remodeling. Am J Hypertens. 2010;23(12):1312–7. doi: 10.1038/ajh.2010.164.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Qiu W, Wu B, Wang X, Buchanan ME, Regueiro MD, Hartman DJ, et al. PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. J Clin Investig. 2011;121(5):1722–32. doi: 10.1172/JCI42917.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Suenaert P, Bulteel V, Lemmens L, Noman M, Geypens B, Van Assche G, et al. Anti-tumor necrosis factor treatment restores the gut barrier in Crohn’s disease. Am J Gastroenterol. 2002;97(8):2000–4. doi: 10.1111/j.1572-0241.2002.05914.x.CrossRefPubMedGoogle Scholar
  35. 35.
    Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3(7):521–33. doi: 10.1038/nri1132.CrossRefPubMedGoogle Scholar
  36. 36.
    Yan F, John SK, Polk DB. Kinase suppressor of Ras determines survival of intestinal epithelial cells exposed to tumor necrosis factor. Cancer Res. 2001;61(24):8668–75.PubMedGoogle Scholar
  37. 37.
    Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3–20; quiz 1–2. doi: 10.1016/j.jaci.2009.05.038.
  38. 38.
    Mouzaoui S, Djerdjouri B, Makhezer N, Kroviarski Y, El-Benna J, Dang PM. Tumor necrosis factor-alpha-induced colitis increases NADPH oxidase 1 expression, oxidative stress, and neutrophil recruitment in the colon: preventive effect of apocynin. Mediat Inflamm. 2014;2014:312484. doi: 10.1155/2014/312484.CrossRefGoogle Scholar
  39. 39.
    Senftleben U, Li ZW, Baud V, Karin M. IKK beta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity. 2001;14(3):217–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Viennois E, Chen F, Merlin D. NF-kappaB pathway in colitis-associated cancers. Transl Gastrointest Cancer. 2013;2(1):21–9. doi: 10.3978/j.issn.2224-4778.2012.11.01.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Gunther C, Neumann H, Neurath MF, Becker C. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut. 2013;62(7):1062–71. doi: 10.1136/gutjnl-2011-301364.CrossRefPubMedGoogle Scholar
  42. 42.
    Shen L, Turner JR. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol Gastrointest Liver Physiol. 2006;290(4):G577–82. doi: 10.1152/ajpgi.00439.2005.CrossRefPubMedGoogle Scholar
  43. 43.
    Chen JY, Pan F, Zhang T, Xia J, Li YJ. Experimental study on the molecular mechanism of anthraquinone cathartics in inducing melanosis coli. Chin J Integr Med. 2011;17(7):525–30. doi: 10.1007/s11655-011-0786-z.CrossRefPubMedGoogle Scholar
  44. 44.
    Edelblum KL, Yan F, Yamaoka T, Polk DB. Regulation of apoptosis during homeostasis and disease in the intestinal epithelium. Inflamm Bowel Dis. 2006;12(5):413–24. doi: 10.1097/01.MIB.0000217334.30689.3e.CrossRefPubMedGoogle Scholar
  45. 45.
    Hagiwara C, Tanaka M, Kudo H. Increase in colorectal epithelial apoptotic cells in patients with ulcerative colitis ultimately requiring surgery. J Gastroenterol Hepatol. 2002;17(7):758–64.CrossRefPubMedGoogle Scholar
  46. 46.
    Zeissig S, Bojarski C, Buergel N, Mankertz J, Zeitz M, Fromm M, et al. Downregulation of epithelial apoptosis and barrier repair in active Crohn’s disease by tumour necrosis factor alpha antibody treatment. Gut. 2004;53(9):1295–302. doi: 10.1136/gut.2003.036632.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Marini M, Bamias G, Rivera-Nieves J, Moskaluk CA, Hoang SB, Ross WG, et al. TNF-alpha neutralization ameliorates the severity of murine Crohn’s-like ileitis by abrogation of intestinal epithelial cell apoptosis. Proc Natl Acad Sci USA. 2003;100(14):8366–71. doi: 10.1073/pnas.1432897100.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Choi SG, Yi Y, Kim YS, Kato M, Chang J, Chung HW, et al. A novel ets-related transcription factor, ERT/ESX/ESE-1, regulates expression of the transforming growth factor-beta type II receptor. J Biol Chem. 1998;273(1):110–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Chang CH, Scott GK, Kuo WL, Xiong X, Suzdaltseva Y, Park JW, et al. ESX: a structurally unique Ets overexpressed early during human breast tumorigenesis. Oncogene. 1997;14(13):1617–22. doi: 10.1038/sj.onc.1200978.CrossRefPubMedGoogle Scholar
  50. 50.
    Ng AY, Waring P, Ristevski S, Wang C, Wilson T, Pritchard M, et al. Inactivation of the transcription factor Elf3 in mice results in dysmorphogenesis and altered differentiation of intestinal epithelium. Gastroenterology. 2002;122(5):1455–66.CrossRefPubMedGoogle Scholar
  51. 51.
    Brembeck FH, Opitz OG, Libermann TA, Rustgi AK. Dual function of the epithelial specific ets transcription factor, ELF3, in modulating differentiation. Oncogene. 2000;19(15):1941–9. doi: 10.1038/sj.onc.1203441.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee SY, Debnath T, Kim SK, Lim BO. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem Toxicol. 2013;60:439–47. doi: 10.1016/j.fct.2013.07.068.CrossRefPubMedGoogle Scholar
  53. 53.
    Kim TH, Kim JS, Kim ZH, Huang RB, Chae YL, Wang RS. Khz (Fusion Product of Ganoderma lucidum and Polyporus umbellatus Mycelia) Induces apoptosis in human colon carcinoma HCT116 cells, accompanied by an increase in reactive oxygen species, activation of caspase 3, and increased intracellular Ca. J Med Food. 2014;. doi: 10.1089/jmf.2013.3135.Google Scholar
  54. 54.
    Grall F, Gu X, Tan L, Cho JY, Inan MS, Pettit AR, et al. Responses to the proinflammatory cytokines interleukin-1 and tumor necrosis factor alpha in cells derived from rheumatoid synovium and other joint tissues involve nuclear factor kappaB-mediated induction of the Ets transcription factor ESE-1. Arthritis Rheum. 2003;48(5):1249–60. doi: 10.1002/art.10942.CrossRefPubMedGoogle Scholar
  55. 55.
    Feagins LA, Souza RF, Spechler SJ. Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat Rev Gastroenterol Hepatol. 2009;6(5):297–305. doi: 10.1038/nrgastro.2009.44.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Liren Li
    • 1
  • Xianjing Miao
    • 1
  • Runzhou Ni
    • 1
  • Xiaobing Miao
    • 5
  • Liang Wang
    • 1
  • Xiaodan Gu
    • 1
  • Lijun Yan
    • 4
  • Qiyun Tang
    • 4
    Email author
  • Dongmei Zhang
    • 2
    • 3
    Email author
  1. 1.Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongPeople’s Republic of China
  2. 2.Department of Pathogen Biology, Medical CollegeNantong UniversityNantongPeople’s Republic of China
  3. 3.Jiangsu Province Key Laboratory for Inflammation and Molecular Drug TargetNantong UniversityNantongPeople’s Republic of China
  4. 4.Department of GastroenterologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China
  5. 5.Department of PathologyAffiliated Cancer Hospital of Nantong UniversityNantongPeople’s Republic of China

Personalised recommendations