Advertisement

Immunologic Research

, Volume 62, Issue 2, pp 234–252 | Cite as

Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility

  • Mamoona NoreenEmail author
  • Muhammad Arshad
Interpretive synthesis review article

Abstract

Toll like receptors (TLRs) play a crucial role in regulation of innate as well as adaptive immunity. TLRs recognize a distinct but limited repertoire of conserved microbial products. Ligand binding to TLRs activates the signaling cascade and results in activation of multiple inflammatory genes. Variation in this immune response is under genetic control. Polymorphisms in genes associated with inflammatory pathway especially influence the outcome of diseases. TLR2 makes heterodimer with TLR1 or TLR6 and recognizes a wide variety of microbial ligands. In this review, we summarize studies of polymorphisms in genes encoding TLR1, TLR2, TLR4, TLR6, and most polymorphic adaptor protein, Mal/TIRAP, revealing their effect on susceptibility to diseases.

Keywords

Polymorphism Disease Susceptibility Toll like receptors Mal/TIRAP 

Notes

Acknowledgments

We are extremely grateful to National University of Sciences & Technology (NUST) and Higher Education Commission (HEC) Islamabad, Pakistan for providing us the opportunity to conduct this study.

References

  1. 1.
    Beutler B. Innate immunity: an overview. Mol Immunol. 2004;40(12):845–59.PubMedGoogle Scholar
  2. 2.
    Barber RC, Chang LY, Arnoldo BD, Purdue GF, Hunt JL, Horton JW, et al. Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin Med Res. 2006;4(4):250–5.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–83.PubMedGoogle Scholar
  4. 4.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. Pillars article: the dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996. 86: 973–983. J Immunol. 2012;188(11):5210–20.PubMedGoogle Scholar
  5. 5.
    Lemaitre B. The road to Toll. Nat Rev Immunol. 2004;4(7):521–7. doi: 10.1038/nri1390.PubMedGoogle Scholar
  6. 6.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388(6640):394–7. doi: 10.1038/41131.PubMedGoogle Scholar
  7. 7.
    Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012;12(3):168–79. doi: 10.1038/Nri3151.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Miggin SM, O’Neill LA. New insights into the regulation of TLR signaling. J Leukoc Biol. 2006;80(2):220–6. doi: 10.1189/jlb.1105672.PubMedGoogle Scholar
  9. 9.
    Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327(5963):291–5. doi: 10.1126/science.1183021.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Akira S, Yamamoto M, Takeda K. Role of adapters in Toll-like receptor signalling. Biochem Soc Trans. 2003;31(Pt 3):637–42. doi: 10.1042/BST0310637.PubMedGoogle Scholar
  11. 11.
    Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11(4):443–51.PubMedGoogle Scholar
  12. 12.
    Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol. 2002;169(1):10–4.PubMedGoogle Scholar
  13. 13.
    Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol. 2001;13(7):933–40.PubMedGoogle Scholar
  14. 14.
    Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ. The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis. 2002;185(10):1483–9. doi: 10.1086/340511.PubMedGoogle Scholar
  15. 15.
    Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med. 2003;197(9):1119–24. doi: 10.1084/jem.20021890.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature. 2001;413(6857):732–8. doi: 10.1038/35099560.PubMedGoogle Scholar
  17. 17.
    Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol. 2000;164(2):558–61.PubMedGoogle Scholar
  18. 18.
    Roelofs MF, Boelens WC, Joosten LA, Abdollahi-Roodsaz S, Geurts J, Wunderink LU, et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol. 2006;176(11):7021–7.PubMedGoogle Scholar
  19. 19.
    Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162(7):3749–52.PubMedGoogle Scholar
  20. 20.
    Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol. 2002;3(7):667–72. doi: 10.1038/ni809.PubMedGoogle Scholar
  21. 21.
    Jiang Z, Georgel P, Du X, Shamel L, Sovath S, Mudd S, et al. CD14 is required for MyD88-independent LPS signaling. Nat Immunol. 2005;6(6):565–70. doi: 10.1038/ni1207.PubMedGoogle Scholar
  22. 22.
    Jack RS, Fan X, Bernheiden M, Rune G, Ehlers M, Weber A, et al. Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature. 1997;389(6652):742–5. doi: 10.1038/39622.PubMedGoogle Scholar
  23. 23.
    Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099–103. doi: 10.1038/35074106.PubMedGoogle Scholar
  24. 24.
    Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9. doi: 10.1126/science.1093620.PubMedGoogle Scholar
  25. 25.
    Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200. doi: 10.1038/ni758.PubMedGoogle Scholar
  26. 26.
    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31. doi: 10.1126/science.1093616.PubMedGoogle Scholar
  27. 27.
    Ishii KJ, Akira S. Innate immune recognition of, and regulation by, DNA. Trends Immunol. 2006;27(11):525–32. doi: 10.1016/j.it.2006.09.002.PubMedGoogle Scholar
  28. 28.
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5. doi: 10.1038/35047123.PubMedGoogle Scholar
  29. 29.
    Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005;201(1):19–25. doi: 10.1084/jem.20041836.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, et al. A Toll-like receptor that prevents infection by uropathogenic bacteria. Science. 2004;303(5663):1522–6. doi: 10.1126/science.1094351.PubMedGoogle Scholar
  31. 31.
    Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science. 2005;308(5728):1626–9. doi: 10.1126/science.1109893.PubMedGoogle Scholar
  32. 32.
    Virtue A, Wang H, Yang XF. MicroRNAs and Toll-like receptor/interleukin-1 receptor signaling. J Hematol Oncol. 2012;5(1):66. doi: 10.1186/1756-8722-5-66.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76. doi: 10.1146/annurev.immunol.21.120601.141126.PubMedGoogle Scholar
  34. 34.
    Janssens S, Burns K, Vercammen E, Tschopp J, Beyaert R. MyD88S, a splice variant of MyD88, differentially modulates NF-κB- and AP-1-dependent gene expression. FEBS Lett. 2003;548(1–3):103–7.PubMedGoogle Scholar
  35. 35.
    Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–45. doi: 10.1038/35100529.PubMedGoogle Scholar
  36. 36.
    Lye E, Mirtsos C, Suzuki N, Suzuki S, Yeh WC. The role of interleukin 1 receptor-associated kinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. J Biol Chem. 2004;279(39):40653–8. doi: 10.1074/jbc.M402666200.PubMedGoogle Scholar
  37. 37.
    Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412(6844):346–51. doi: 10.1038/35085597.PubMedGoogle Scholar
  38. 38.
    Qian Y, Commane M, Ninomiya-Tsuji J, Matsumoto K, Li X. IRAK-mediated translocation of TRAF6 and TAB 2 in the interleukin-1-induced activation of NFκB. J Biol Chem. 2001;276(45):41661–7. doi: 10.1074/jbc.M102262200.PubMedGoogle Scholar
  39. 39.
    Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB 2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol. 2002;22(20):7158–67.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511. doi: 10.1038/nri1391.PubMedGoogle Scholar
  41. 41.
    Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, et al. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science. 1997;278(5339):860–6.PubMedGoogle Scholar
  42. 42.
    Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22(2):153–83.PubMedGoogle Scholar
  43. 43.
    Buss H, Dorrie A, Schmitz ML, Hoffmann E, Resch K, Kracht M. Constitutive and interleukin-1-inducible phosphorylation of p65 NF-κB at serine 536 is mediated by multiple protein kinases including IκB kinase (IKK)-α, IKKβ, IKKε, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J Biol Chem. 2004;279(53):55633–43. doi: 10.1074/jbc.M409825200.PubMedGoogle Scholar
  44. 44.
    Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C, et al. Bruton’s tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor κB activation by Toll-like receptor 4. J Biol Chem. 2003;278(28):26258–64. doi: 10.1074/jbc.M301484200.PubMedGoogle Scholar
  45. 45.
    Doyle SL, Jefferies CA, O’Neill LA. Bruton’s tyrosine kinase is involved in p65-mediated transactivation and phosphorylation of p65 on serine 536 during NFκB activation by lipopolysaccharide. J Biol Chem. 2005;280(25):23496–501. doi: 10.1074/jbc.C500053200.PubMedGoogle Scholar
  46. 46.
    Gray P, Dunne A, Brikos C, Jefferies CA, Doyle SL, O’Neill LA. MyD88 adapter-like (Mal) is phosphorylated by Bruton’s tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem. 2006;281(15):10489–95. doi: 10.1074/jbc.M508892200.PubMedGoogle Scholar
  47. 47.
    Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, et al. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J Exp Med. 2003;198(7):1043–55. doi: 10.1084/jem.20031023.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Jiang Z, Zamanian-Daryoush M, Nie H, Silva AM, Williams BR, Li X. Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFκB and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3–TRAF6–TAK1–TAB2–PKR. J Biol Chem. 2003;278(19):16713–9. doi: 10.1074/jbc.M300562200.PubMedGoogle Scholar
  49. 49.
    Jiang Z, Mak TW, Sen G, Li X. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc Natl Acad Sci USA. 2004;101(10):3533–8. doi: 10.1073/pnas.0308496101.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation. Nat Immunol. 2004;5(5):503–7. doi: 10.1038/ni1061.PubMedGoogle Scholar
  51. 51.
    Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol. 2003;171(8):4304–10.PubMedGoogle Scholar
  52. 52.
    Altare F, Durandy A, Lammas D, Emile JF, Lamhamedi S, Le Deist F, et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science. 1998;280(5368):1432–5.PubMedGoogle Scholar
  53. 53.
    Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002;20:581–620. doi: 10.1146/annurev.immunol.20.081501.125851.PubMedGoogle Scholar
  54. 54.
    Cooke GS, Hill AV. Genetics of susceptibility to human infectious disease. Nat Rev Genet. 2001;2(12):967–77. doi: 10.1038/35103577.PubMedGoogle Scholar
  55. 55.
    Hill AV. The genomics and genetics of human infectious disease susceptibility. Annu Rev Genomics Hum Genet. 2001;2:373–400. doi: 10.1146/annurev.genom.2.1.373.PubMedGoogle Scholar
  56. 56.
    Molvig J, Baek L, Christensen P, Manogue KR, Vlassara H, Platz P, et al. Endotoxin-stimulated human monocyte secretion of interleukin 1, tumour necrosis factor alpha, and prostaglandin E2 shows stable interindividual differences. Scand J Immunol. 1988;27(6):705–16.PubMedGoogle Scholar
  57. 57.
    Westendorp RG, Langermans JA, Huizinga TW, Elouali AH, Verweij CL, Boomsma DI, et al. Genetic influence on cytokine production and fatal meningococcal disease. Lancet. 1997;349(9046):170–3.PubMedGoogle Scholar
  58. 58.
    Wurfel MM, Park WY, Radella F, Ruzinski J, Sandstrom A, Strout J, et al. Identification of high and low responders to lipopolysaccharide in normal subjects: an unbiased approach to identify modulators of innate immunity. J Immunol. 2005;175(4):2570–8.PubMedGoogle Scholar
  59. 59.
    Yaqoob P, Newsholme EA, Calder PC. Comparison of cytokine production in cultures of whole human blood and purified mononuclear cells. Cytokine. 1999;11(8):600–5. doi: 10.1006/cyto.1998.0471.PubMedGoogle Scholar
  60. 60.
    Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med. 1996;335(26):1941–9. doi: 10.1056/NEJM199612263352602.PubMedGoogle Scholar
  61. 61.
    Orange JS, Geha RS. Finding NEMO: genetic disorders of NF-κB activation. J Clin Invest. 2003;112(7):983–5. doi: 10.1172/JCI19960.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Puel A, Picard C, Ku CL, Smahi A, Casanova JL. Inherited disorders of NF-κB-mediated immunity in man. Curr Opin Immunol. 2004;16(1):34–41.PubMedGoogle Scholar
  63. 63.
    Noreen M, Shah MA, Mall SM, Choudhary S, Hussain T, Ahmed I, et al. TLR4 polymorphisms and disease susceptibility. Inflamm Res. 2012;61(3):177–88. doi: 10.1007/s00011-011-0427-1.PubMedGoogle Scholar
  64. 64.
    Schroder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis. 2005;5(3):156–64. doi: 10.1016/S1473-3099(05)01308-3.PubMedGoogle Scholar
  65. 65.
    Hill AV. Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet. 2006;40:469–86. doi: 10.1146/annurev.genet.40.110405.090546.PubMedGoogle Scholar
  66. 66.
    Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA. A novel polymorphism in the Toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun. 2000;68(11):6398–401.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Schroder NW, Diterich I, Zinke A, Eckert J, Draing C, von Baehr V, et al. Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J Immunol. 2005;175(4):2534–40.PubMedGoogle Scholar
  68. 68.
    Moore CE, Segal S, Berendt AR, Hill AV, Day NP. Lack of association between Toll-like receptor 2 polymorphisms and susceptibility to severe disease caused by Staphylococcus aureus. Clin Diagn Lab Immunol. 2004;11(6):1194–7. doi: 10.1128/CDLI.11.6.1194-1197.2004.PubMedCentralPubMedGoogle Scholar
  69. 69.
    van Well GT, Sanders MS, Ouburg S, van Furth AM, Morre SA. Polymorphisms in Toll-like receptors 2, 4, and 9 are highly associated with hearing loss in survivors of bacterial meningitis. PLoS One. 2012;7(5):e35837. doi: 10.1371/journal.pone.0035837.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Kutukculer N, Yeniay BS, Aksu G, Berdeli A. Arg753Gln polymorphism of the human Toll-like receptor-2 gene in children with recurrent febrile infections. Biochem Genet. 2007;45(7–8):507–14. doi: 10.1007/s10528-007-9091-0.PubMedGoogle Scholar
  71. 71.
    Schroder NW, Hermann C, Hamann L, Gobel UB, Hartung T, Schumann RR. High frequency of polymorphism Arg753Gln of the Toll-like receptor-2 gene detected by a novel allele-specific PCR. J Mol Med (Berl). 2003;81(6):368–72. doi: 10.1007/s00109-003-0443-x.Google Scholar
  72. 72.
    Ahmad-Nejad P, Denz C, Zimmer W, Wacker J, Bugert P, Weiss C, et al. The presence of functionally relevant Toll-like receptor polymorphisms does not significantly correlate with development or outcome of sepsis. Genet Test Mol Biomark. 2011;15(9):645–51. doi: 10.1089/gtmb.2010.0258.Google Scholar
  73. 73.
    Lee SO, Brown RA, Kang SH, Abdel-Massih RC, Razonable RR. Toll-like receptor 2 polymorphism and Gram-positive bacterial infections after liver transplantation. Liver Transpl. 2011;17(9):1081–8. doi: 10.1002/lt.22327.PubMedGoogle Scholar
  74. 74.
    Tabel Y, Berdeli A, Mir S. Association of TLR2 gene Arg753Gln polymorphism with urinary tract infection in children. Int J Immunogenet. 2007;34(6):399–405. doi: 10.1111/j.1744-313X.2007.00709.x.PubMedGoogle Scholar
  75. 75.
    Moura SB, Almeida LR, Guerra JB, Rocha GA, Camargos Rocha AM, Melo FF, et al. Toll-like receptor (TLR2, TLR4 and TLR5) gene polymorphisms and Helicobacter pylori infection in children with and without duodenal ulcer. Microbes Infect. 2008;10(14–15):1477–83. doi: 10.1016/j.micinf.2008.08.009.PubMedGoogle Scholar
  76. 76.
    Pandey S, Agrawal DK. Immunobiology of Toll-like receptors: emerging trends. Immunol Cell Biol. 2006;84(4):333–41. doi: 10.1111/j.1440-1711.2006.01444.x.PubMedGoogle Scholar
  77. 77.
    Dalgic N, Tekin D, Kayaalti Z, Soylemezoglu T, Cakir E, Kilic B, et al. Arg753Gln polymorphism of the human Toll-like receptor 2 gene from infection to disease in pediatric tuberculosis. Hum Immunol. 2011;72(5):440–5. doi: 10.1016/j.humimm.2011.02.001.PubMedGoogle Scholar
  78. 78.
    Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, et al. The Arg753GLn polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur Respir J. 2004;23(2):219–23.PubMedGoogle Scholar
  79. 79.
    Smirnova I, Mann N, Dols A, Derkx HH, Hibberd ML, Levin M, et al. Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci USA. 2003;100(10):6075–80. doi: 10.1073/pnas.1031605100.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Pabst S, Yenice V, Lennarz M, Tuleta I, Nickenig G, Gillissen A, et al. Toll-like receptor 2 gene polymorphisms Arg677Trp and Arg753Gln in chronic obstructive pulmonary disease. Lung. 2009;187(3):173–8. doi: 10.1007/s00408-009-9144-8.PubMedGoogle Scholar
  81. 81.
    Yoon HJ, Choi JY, Kim CO, Park YS, Kim MS, Kim YK, et al. Lack of Toll-like receptor 4 and 2 polymorphisms in Korean patients with bacteremia. J Korean Med Sci. 2006;21(6):979–82.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Everett B, Cameron B, Li H, Vollmer-Conna U, Davenport T, Hickie I, et al. Polymorphisms in Toll-like receptors-2 and -4 are not associated with disease manifestations in acute Q fever. Genes Immun. 2007;8(8):699–702. doi: 10.1038/sj.gene.6364428.PubMedGoogle Scholar
  83. 83.
    Eid AJ, Brown RA, Paya CV, Razonable RR. Association between Toll-like receptor polymorphisms and the outcome of liver transplantation for chronic hepatitis C virus. Transplantation. 2007;84(4):511–6. doi: 10.1097/01.tp.0000276960.35313.bf.PubMedGoogle Scholar
  84. 84.
    Kijpittayarit S, Eid AJ, Brown RA, Paya CV, Razonable RR. Relationship between Toll-like receptor 2 polymorphism and cytomegalovirus disease after liver transplantation. Clin Infect Dis. 2007;44(10):1315–20. doi: 10.1086/514339.PubMedGoogle Scholar
  85. 85.
    Kang SH, Abdel-Massih RC, Brown RA, Dierkhising RA, Kremers WK, Razonable RR. Homozygosity for the Toll-like receptor 2 R753Q single-nucleotide polymorphism is a risk factor for cytomegalovirus disease after liver transplantation. J Infect Dis. 2012;205(4):639–46. doi: 10.1093/infdis/jir819.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Carvalho A, Cunha C, Carotti A, Aloisi T, Guarrera O, Di Ianni M, et al. Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Exp Hematol. 2009;37(9):1022–9. doi: 10.1016/j.exphem.2009.06.004.PubMedGoogle Scholar
  87. 87.
    Bochud PY, Magaret AS, Koelle DM, Aderem A, Wald A. Polymorphisms in TLR2 are associated with increased viral shedding and lesional rate in patients with genital herpes simplex virus type 2 infection. J Infect Dis. 2007;196(4):505–9. doi: 10.1086/519693.PubMedGoogle Scholar
  88. 88.
    Bochud PY, Hawn TR, Aderem A. Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J Immunol. 2003;170(7):3451–4.PubMedGoogle Scholar
  89. 89.
    Kang TJ, Lee SB, Chae GT. A polymorphism in the Toll-like receptor 2 is associated with IL-12 production from monocyte in lepromatous leprosy. Cytokine. 2002;20(2):56–62. doi: 10.1006/cyto.2002.1982.PubMedGoogle Scholar
  90. 90.
    Kang TJ, Chae GT. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol. 2001;31(1):53–8.PubMedGoogle Scholar
  91. 91.
    Ben-Ali M, Barbouche MR, Bousnina S, Chabbou A, Dellagi K. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol. 2004;11(3):625–6. doi: 10.1128/CDLI.11.3.625-626.2004.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Malhotra D, Relhan V, Reddy BS, Bamezai R. TLR2 Arg677Trp polymorphism in leprosy: revisited. Hum Genet. 2005;116(5):413–5. doi: 10.1007/s00439-004-1249-9.PubMedGoogle Scholar
  93. 93.
    Mikita N, Kanazawa N, Ozaki M, Kosaka M, Ishii N, Nishimura H, et al. No involvement of non-synonymous TLR2 polymorphisms in Japanese leprosy patients. J Dermatol Sci. 2009;54(1):48–9. doi: 10.1016/j.jdermsci.2008.11.001.PubMedGoogle Scholar
  94. 94.
    Stappers MH, Thys Y, Oosting M, Plantinga TS, Ioana M, Reimnitz P, et al. TLR1, TLR2, and TLR6 gene polymorphisms are associated with increased susceptibility to complicated skin and skin structure infections. J Infect Dis. 2014;210(2):311–8. doi: 10.1093/infdis/jiu080.PubMedGoogle Scholar
  95. 95.
    Bochud PY, Hawn TR, Siddiqui MR, Saunderson P, Britton S, Abraham I, et al. Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J Infect Dis. 2008;197(2):253–61. doi: 10.1086/524688.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Thuong NT, Hawn TR, Thwaites GE, Chau TT, Lan NT, Quy HT, et al. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 2007;8(5):422–8. doi: 10.1038/sj.gene.6364405.PubMedGoogle Scholar
  97. 97.
    Pimentel-Nunes P, Teixeira AL, Pereira C, Gomes M, Brandao C, Rodrigues C, et al. Functional polymorphisms of Toll-like receptors 2 and 4 alter the risk for colorectal carcinoma in Europeans. Dig Liver Dis. 2012;. doi: 10.1016/j.dld.2012.08.006.PubMedGoogle Scholar
  98. 98.
    Yim JJ, Ding L, Schaffer AA, Park GY, Shim YS, Holland SM. A microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene: functional implications and racial differences. FEMS Immunol Med Microbiol. 2004;40(2):163–9. doi: 10.1016/S0928-8244(03)00342-0.PubMedGoogle Scholar
  99. 99.
    Yim JJ, Lee HW, Lee HS, Kim YW, Han SK, Shim YS, et al. The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun. 2006;7(2):150–5. doi: 10.1038/sj.gene.6364274.PubMedGoogle Scholar
  100. 100.
    Motsinger-Reif AA, Antas PR, Oki NO, Levy S, Holland SM, Sterling TR. Polymorphisms in IL-1β, vitamin D receptor Fok1, and Toll-like receptor 2 are associated with extrapulmonary tuberculosis. BMC Med Genet. 2010;11:37. doi: 10.1186/1471-2350-11-37.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Yim JJ, Kim HJ, Kwon OJ, Koh WJ. Association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and nontuberculous mycobacterial lung disease in a Korean population. Hum Immunol. 2008;69(9):572–6. doi: 10.1016/j.humimm.2008.06.003.PubMedGoogle Scholar
  102. 102.
    Greene JA, Moormann AM, Vulule J, Bockarie MJ, Zimmerman PA, Kazura JW. Toll-like receptor polymorphisms in malaria-endemic populations. Malar J. 2009;8:50. doi: 10.1186/1475-2875-8-50.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Velez DR, Wejse C, Stryjewski ME, Abbate E, Hulme WF, Myers JL, et al. Variants in Toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African–Americans, and West Africans. Hum Genet. 2010;127(1):65–73. doi: 10.1007/s00439-009-0741-7.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Berdeli A, Celik HA, Ozyurek R, Dogrusoz B, Aydin HH. TLR-2 gene Arg753Gln polymorphism is strongly associated with acute rheumatic fever in children. J Mol Med. 2005;83(7):535–41. doi: 10.1007/s00109-005-0677-x.PubMedGoogle Scholar
  105. 105.
    Duzgun N, Duman T, Haydardedeoglu FE, Tutkak H. The lack of genetic association of the Toll-like receptor 2 (TLR2) Arg753Gln and Arg677Trp polymorphisms with rheumatic heart disease. Clin Rheumatol. 2007;26(6):915–9. doi: 10.1007/s10067-006-0432-x.PubMedGoogle Scholar
  106. 106.
    Folwaczny M, Glas J, Torok HP, Limbersky O, Folwaczny C. Toll-like receptor (TLR) 2 and 4 mutations in periodontal disease. Clin Exp Immunol. 2004;135(2):330–5. doi: 10.1111/j.1365-2249.2003.02383.x.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Emingil G, Berdeli A, Baylas H, Saygan BH, Gurkan A, Kose T, et al. Toll-like receptor 2 and 4 gene polymorphisms in generalized aggressive periodontitis. J Periodontol. 2007;78(10):1968–77. doi: 10.1902/jop.2007.060360.PubMedGoogle Scholar
  108. 108.
    Zhu GX, Li CZ, Cao ZG, Corbet EF, Jin LJ. Toll-like receptors 2 and 4 gene polymorphisms in a Chinese population with periodontitis. Quintessence Int. 2008;39(3):217–26.PubMedGoogle Scholar
  109. 109.
    Berdeli A, Emingil G, Han Saygan B, Gurkan A, Atilla G, Kose T, et al. TLR2 Arg753Gly, TLR4 Asp299Gly and Thr399Ile gene polymorphisms are not associated with chronic periodontitis in a Turkish population. J Clin Periodontol. 2007;34(7):551–7. doi: 10.1111/j.1600-051X.2007.01092.x.PubMedGoogle Scholar
  110. 110.
    Imamura Y, Fujigaki Y, Oomori Y, Kuno T, Ota N, Wang PL. Polymorphism of genes encoding Toll-like receptors and inflammatory cytokines in periodontal disease in the Japanese population. J Int Acad Periodontol. 2008;10(3):95–102.PubMedGoogle Scholar
  111. 111.
    Krediet TG, Wiertsema SP, Vossers MJ, Hoeks SBEA, Fleer A, Ruven HJT, et al. Toll-like receptor 2 polymorphism is associated with preterm birth. Pediatr Res. 2007;62(4):474–6.PubMedGoogle Scholar
  112. 112.
    Pierik M, Joossens S, Van Steen K, Van Schuerbeek N, Vlietinck R, Rutgeerts P, et al. Toll-like receptor-1,-2, and-6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis. 2006;12(1):1–8. doi: 10.1097/01.Mib.0000195389.11645.Ab.PubMedGoogle Scholar
  113. 113.
    Hamann L, Gomma A, Schroder NWJ, Stamme C, Glaeser C, Schulz S, et al. A frequent Toll-like receptor (TLR)-2 polymorphism is a risk factor for coronary restenosis. J Mol Med. 2005;83(6):478–85. doi: 10.1007/s00109-005-0643-7.PubMedGoogle Scholar
  114. 114.
    Guven M, Ismailoglu Z, Batar B, Unal S, Onaran I, Karadag B, et al. The effect of genetic polymorphisms of TLR2 and TLR4 in Turkish patients with coronary artery disease. Gene. 2015;558(1):99–102. doi: 10.1016/j.gene.2014.12.047.PubMedGoogle Scholar
  115. 115.
    Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K, Klotz M, Werfel T, Herz U, et al. The Toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol. 2004;113(3):565–7. doi: 10.1016/j.jaci.2003.12.583.PubMedGoogle Scholar
  116. 116.
    Mrabet-Dahbi S, Dalpke AH, Niebuhr M, Frey M, Draing C, Brand S, et al. The Toll-like receptor 2 R753Q mutation modifies cytokine production and Toll-like receptor expression in atopic dermatitis. J Allergy Clin Immunol. 2008;121(4):1013–9. doi: 10.1016/j.jaci.2007.11.029.PubMedGoogle Scholar
  117. 117.
    Niebuhr M, Langnickel J, Draing C, Renz H, Kapp A, Werfel T. Dysregulation of Toll-like receptor-2 (TLR-2)-induced effects in monocytes from patients with atopic dermatitis: impact of the TLR-2 R753Q polymorphism. Allergy. 2008;63(6):728–34. doi: 10.1111/j.1398-9995.2008.01721.x.PubMedGoogle Scholar
  118. 118.
    Jelavic TB, Barisic M, Hofman ID, Boraska V, Vrdoljak E, Peruzovic M, et al. Microsatelite GT polymorphism in the Toll-like receptor 2 is associated with colorectal cancer. Clin Genet. 2006;70(2):156–60. doi: 10.1111/j.1399-0004.2006.00651.x.Google Scholar
  119. 119.
    Hong J, Leung E, Fraser AG, Merriman TR, Vishnu P, Krissansen GW. TLR2, TLR4 and TLR9 polymorphisms and Crohn’s disease in a New Zealand Caucasian cohort. J Gastroenterol Hepatol. 2007;22(11):1760–6. doi: 10.1111/j.1440-1746.2006.04727.x.PubMedGoogle Scholar
  120. 120.
    Bahrami H, Daneshmandi S, Heidarnazhad H, Pourfathollah AA. Lack of association between Toll like receptor-2 and Toll like receptor-4 gene polymorphisms and other feature in Iranian asthmatics patients. Iran J Allergy Asthma Immunol. 2015;14(1):48–54.PubMedGoogle Scholar
  121. 121.
    Redecke V, Hacker H, Datta SK, Fermin A, Pitha PM, Broide DH, et al. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol. 2004;172(5):2739–43.PubMedGoogle Scholar
  122. 122.
    Yang IA, Barton SJ, Rorke S, Cakebread JA, Keith TP, Clough JB, et al. Toll-like receptor 4 polymorphism and severity of atopy in asthmatics. Genes Immun. 2004;5(1):41–5. doi: 10.1038/sj.gene.6364037.PubMedGoogle Scholar
  123. 123.
    Eder W, Klimecki W, Yu LZ, von Mutius E, Riedler J, Braun-Fahrlander C, et al. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol. 2004;113(3):482–8. doi: 10.1016/j.jaci.2003.12.374.PubMedGoogle Scholar
  124. 124.
    Nieters A, Beckmann L, Deeg E, Becker N. Gene polymorphisms in Toll-like receptors, interleukin-10, and interleukin-10 receptor alpha and lymphoma risk. Genes Immun. 2006;7(8):615–24. doi: 10.1038/sj.gene.6364337.PubMedGoogle Scholar
  125. 125.
    Sutherland AM, Walley KR, Russell JA. Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med. 2005;33(3):638–44.PubMedGoogle Scholar
  126. 126.
    Purdue MP, Lan Q, Wang SS, Kricker A, Menashe I, Zheng TZ, et al. A pooled investigation of Toll-like receptor gene variants and risk of non-Hodgkin lymphoma. Carcinogenesis. 2009;30(2):275–81. doi: 10.1093/carcin/bgn262.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Bjornvold M, Munthe-Kaas MC, Egeland T, Joner G, Dahl-Jorgensen K, Njolstad PR, et al. A TLR2 polymorphism is associated with type 1 diabetes and allergic asthma. Genes Immun. 2009;10(2):181–7. doi: 10.1038/gene.2008.100.PubMedGoogle Scholar
  128. 128.
    Tomiyama R, Meguro A, Ota M, Katsuyama Y, Nishide T, Uemoto R, et al. Investigation of the association between Toll-like receptor 2 gene polymorphisms and Behcet’s disease in Japanese patients. Hu Immunol. 2009;70(1):41–4. doi: 10.1016/j.humimm.2008.10.014.Google Scholar
  129. 129.
    Rahman HA, Khorshied MM, Khorshid OM, Mahgoub SM. Toll-like receptor 2 and 9 genetic polymorphisms and the susceptibility to B cell Non-Hodgkin Lymphoma in Egypt. Ann Hematol. 2014;93(11):1859–65. doi: 10.1007/s00277-014-2131-z.PubMedGoogle Scholar
  130. 130.
    Lee EY, Yim JJ, Lee HS, Lee YJ, Lee EB, Song YW. Dinucleotide repeat polymorphism in intron II of human Toll-like receptor 2 gene and susceptibility to rheumatoid arthritis. Int J Immunogenet. 2006;33(3):211–5. doi: 10.1111/j.1744-313X.2006.00599.x.PubMedGoogle Scholar
  131. 131.
    Takagi Y, Masamune A, Kume K, Satoh A, Kikuta K, Watanabe T, et al. Microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene is associated with susceptibility to acute pancreatitis in Japan. Hum Immunol. 2009;70(3):200–4. doi: 10.1016/j.humimm.2009.01.006.PubMedGoogle Scholar
  132. 132.
    Srivastava K, Srivastava A, Kumar A, Mittal B. Significant association between Toll-like receptor gene polymorphisms and gallbladder cancer. Liver Int. 2010;30(7):1067–72. doi: 10.1111/j.1478-3231.2010.02268.x.PubMedGoogle Scholar
  133. 133.
    Theodoropoulos GE, Saridakis V, Karantanos T, Michalopoulos NV, Zagouri F, Kontogianni P, et al. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development. Breast. 2012;21(4):534–8. doi: 10.1016/j.breast.2012.04.001.PubMedGoogle Scholar
  134. 134.
    de Oliveira JG, Silva AE. Polymorphisms of the TLR2 and TLR4 genes are associated with risk of gastric cancer in a Brazilian population. World J Gastroenterol. 2012;18(11):1235–42. doi: 10.3748/wjg.v18.i11.1235.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Singh V, Srivastava N, Kapoor R, Mittal RD. Single-nucleotide polymorphisms in Genes Encoding Toll-like Receptor -2, -3, -4, and -9 in a case–control study with bladder cancer susceptibility in a North Indian population. Arch Med Res. 2012;. doi: 10.1016/j.arcmed.2012.10.008.PubMedGoogle Scholar
  136. 136.
    Pandey S, Mittal RD, Srivastava M, Srivastava K, Singh S, Srivastava S, et al. Impact of Toll-like receptors [TLR] 2 (-196 to -174 del) and TLR 4 (Asp299Gly, Thr399Ile) in cervical cancer susceptibility in North Indian women. Gynecol Oncol. 2009;114(3):501–5. doi: 10.1016/j.ygyno.2009.05.032.PubMedGoogle Scholar
  137. 137.
    Tahara T, Arisawa T, Wang F, Shibata T, Nakamura M, Sakata M, et al. Toll-like receptor 2-196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci. 2007;98(11):1790–4. doi: 10.1111/j.1349-7006.2007.00590.x.PubMedGoogle Scholar
  138. 138.
    Hishida A, Matsuo K, Goto Y, Naito M, Wakai K, Tajima K, et al. No associations of Toll-like receptor 2 (TLR2)-196 to-174del polymorphism with the risk of Helicobacter pylori seropositivity, gastric atrophy, and gastric cancer in Japanese. Gastric Cancer. 2010;13(4):251–7. doi: 10.1007/s10120-010-0567-y.PubMedGoogle Scholar
  139. 139.
    Wang F, Tahara T, Arisawa T, Shibata T, Nakamura M, Fujita H, et al. Genetic polymorphisms of CD14 and Toll-like receptor-2 (TLR2) in patients with ulcerative colitis. J Gastroenterol Hepatol. 2007;22(6):925–9. doi: 10.1111/j.1440-1746.2007.04909.x.PubMedGoogle Scholar
  140. 140.
    Omueti KO, Beyer JM, Johnson CM, Lyle EA, Tapping RI. Domain exchange between human Toll-like receptors 1 and 6 reveals a region required for lipopeptide discrimination. J Biol Chem. 2005;280(44):36616–25. doi: 10.1074/jbc.M504320200.PubMedGoogle Scholar
  141. 141.
    Sun J, Wiklund F, Hsu FC, Balter K, Zheng SL, Johansson JE, et al. Interactions of sequence variants in interleukin-1 receptor-associated kinase4 and the Toll-like receptor 6-1-10 gene cluster increase prostate cancer risk. Cancer Epidemiol Biomark Prev. 2006;15(3):480–5. doi: 10.1158/1055-9965.EPI-05-0645.Google Scholar
  142. 142.
    Omueti KO, Mazur DJ, Thompson KS, Lyle EA, Tapping RI. The polymorphism P315L of human Toll-like receptor 1 impairs innate immune sensing of microbial cell wall components. J Immunol. 2007;178(10):6387–94.PubMedGoogle Scholar
  143. 143.
    Kesh S, Mensah NY, Peterlongo P, Jaffe D, Hsu K, van den Brink M, et al. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann N Y Acad Sci. 2005;1062:95–103. doi: 10.1196/annals.1358.012.PubMedGoogle Scholar
  144. 144.
    Verstraelen H, Verhelst R, Nuytinck L, Roelens K, De Meester E, De Vos D, et al. Gene polymorphisms of Toll-like and related recognition receptors in relation to the vaginal carriage of Gardnerella vaginalis and Atopobium vaginae. J Reprod Immunol. 2009;79(2):163–73. doi: 10.1016/j.jri.2008.10.006.PubMedGoogle Scholar
  145. 145.
    West TE, Chierakul W, Chantratita N, Limmathurotsakul D, Wuthiekanun V, Emond MJ, et al. Toll-like receptor 4 region genetic variants are associated with susceptibility to melioidosis. Genes Immun. 2012;13(1):38–46. doi: 10.1038/gene.2011.49.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Hawn TR, Misch EA, Dunstan SJ, Thwaites GE, Lan NT, Quy HT, et al. A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J Immunol. 2007;37(8):2280–9. doi: 10.1002/eji.200737034.PubMedGoogle Scholar
  147. 147.
    Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, Alpsoy E, et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol. 2007;178(12):7520–4.PubMedGoogle Scholar
  148. 148.
    Yang CA, Scheibenbogen C, Bauer S, Kleinle C, Wex T, Bornschein J, et al. A frequent Toll-like receptor 1 gene polymorphism affects NK- and T-cell IFN-γ production and is associated with Helicobacter pylori-induced gastric disease. Helicobacter. 2012;. doi: 10.1111/hel.12001.Google Scholar
  149. 149.
    Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen RT, et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med. 2002;8(8):878–84. doi: 10.1038/nm732.PubMedGoogle Scholar
  150. 150.
    Leoratti FM, Farias L, Alves FP, Suarez-Mutis MC, Coura JR, Kalil J, et al. Variants in the Toll-like receptor signaling pathway and clinical outcomes of malaria. J Infect Dis. 2008;198(5):772–80. doi: 10.1086/590440.PubMedGoogle Scholar
  151. 151.
    Zhang Y, Jiang T, Yang X, Xue Y, Wang C, Liu J, et al. Toll-like receptor -1, -2, and -6 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and meta-analysis. PLoS One. 2013;8(5):e63357. doi: 10.1371/journal.pone.0063357.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Plantinga TS, Johnson MD, Scott WK, van de Vosse E, Velez Edwards DR, Smith PB, et al. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis. 2012;205(6):934–43. doi: 10.1093/infdis/jir867.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Tantisira K, Klimecki WT, Lazarus R, Palmer LJ, Raby BA, Kwiatkowski DJ, et al. Toll-like receptor 6 gene (TLR6): single-nucleotide polymorphism frequencies and preliminary association with the diagnosis of asthma. Genes Immun. 2004;5(5):343–6. doi: 10.1038/sj.gene.6364096.PubMedGoogle Scholar
  154. 154.
    Ma X, Liu Y, Gowen BB, Graviss EA, Clark AG, Musser JM. Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One. 2007;2(12):e1318. doi: 10.1371/journal.pone.0001318.PubMedCentralPubMedGoogle Scholar
  155. 155.
    Sun J, Wiklund F, Zheng SL, Chang B, Balter K, Li L, et al. Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J Natl Cancer Inst. 2005;97(7):525–32. doi: 10.1093/jnci/dji070.PubMedGoogle Scholar
  156. 156.
    Stevens VL, Hsing AW, Talbot JT, Zheng SL, Sun J, Chen J, et al. Genetic variation in the Toll-like receptor gene cluster (TLR10–TLR1–TLR6) and prostate cancer risk. Int J Cancer. 2008;123(11):2644–50. doi: 10.1002/ijc.23826.PubMedGoogle Scholar
  157. 157.
    Chen YC, Giovannucci E, Kraft P, Lazarus R, Hunter DJ. Association between Toll-like receptor gene cluster (TLR6, TLR1, and TLR10) and prostate cancer. Cancer Epidemiol Biomark Prev. 2007;16(10):1982–9. doi: 10.1158/1055-9965.Epi-07-0325.Google Scholar
  158. 158.
    Schippers EF, van ‘t Veer C, van Voorden S, Martina CA, Huizinga TW, le Cessie S, et al. IL-10 and Toll-like receptor-4 polymorphisms and the in vivo and ex vivo response to endotoxin. Cytokine. 2005;29(5):215–28. doi: 10.1016/j.cyto.2004.12.005.PubMedGoogle Scholar
  159. 159.
    Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007;130(5):906–17. doi: 10.1016/j.cell.2007.08.002.PubMedGoogle Scholar
  160. 160.
    van der Graaf C, Kullberg BJ, Joosten L, Verver-Jansen T, Jacobs L, Van der Meer JW, et al. Functional consequences of the Asp299Gly Toll-like receptor-4 polymorphism. Cytokine. 2005;30(5):264–8. doi: 10.1016/j.cyto.2005.02.001.PubMedGoogle Scholar
  161. 161.
    Rallabhandi P, Bell J, Boukhvalova MS, Medvedev A, Lorenz E, Arditi M, et al. Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J Immunol. 2006;177(1):322–32.PubMedGoogle Scholar
  162. 162.
    Child NJ, Yang IA, Pulletz MC, de Courcy-Golder K, Andrews AL, Pappachan VJ, et al. Polymorphisms in Toll-like receptor 4 and the systemic inflammatory response syndrome. Biochem Soc Trans. 2003;31(Pt 3):652–3. doi: 10.1042/BST0310652.PubMedGoogle Scholar
  163. 163.
    Lorenz E, Mira JP, Frees KL, Schwartz DA. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med. 2002;162(9):1028–32.PubMedGoogle Scholar
  164. 164.
    Agnese DM, Calvano JE, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, et al. Human Toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis. 2002;186(10):1522–5. doi: 10.1086/344893.PubMedGoogle Scholar
  165. 165.
    Carregaro F, Carta A, Cordeiro JA, Lobo SM, Silva EH, Leopoldino AM. Polymorphisms IL10-819 and TLR-2 are potentially associated with sepsis in Brazilian patients. Mem Inst Oswaldo Cruz. 2010;105(5):649–56.PubMedGoogle Scholar
  166. 166.
    Feterowski C, Emmanuilidis K, Miethke T, Gerauer K, Rump M, Ulm K, et al. Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology. 2003;109(3):426–31.PubMedCentralPubMedGoogle Scholar
  167. 167.
    Faber J, Meyer CU, Gemmer C, Russo A, Finn A, Murdoch C, et al. Human Toll-like receptor 4 mutations are associated with susceptibility to invasive meningococcal disease in infancy. Pediatr Infect Dis J. 2006;25(1):80–1.PubMedGoogle Scholar
  168. 168.
    Read RC, Pullin J, Gregory S, Borrow R, Kaczmarski EB, di Giovine FS, et al. A functional polymorphism of Toll-like receptor 4 is not associated with likelihood or severity of meningococcal disease. J Infect Dis. 2001;184(5):640–2. doi: 10.1086/322798.PubMedGoogle Scholar
  169. 169.
    Allen A, Obaro S, Bojang K, Awomoyi AA, Greenwood BM, Whittle H, et al. Variation in Toll-like receptor 4 and susceptibility to group A meningococcal meningitis in Gambian children. Pediatr Infect Dis J. 2003;22(11):1018–9.PubMedGoogle Scholar
  170. 170.
    Biebl A, Muendlein A, Kazakbaeva Z, Heuberger S, Sonderegger G, Drexel H, et al. CD14 C-159T and Toll-like receptor 4 Asp299Gly polymorphisms in surviving meningococcal disease patients. PLoS One. 2009;4(10):e7374. doi: 10.1371/journal.pone.0007374.PubMedCentralPubMedGoogle Scholar
  171. 171.
    Tian T, Jin S, Dong J, Li G. Lack of association between Toll-like receptor 4 gene Asp299Gly and Thr399Ile polymorphisms and tuberculosis susceptibility: a meta-analysis. Infect Genet Evol. 2013;14:156–60. doi: 10.1016/j.meegid.2012.11.009.PubMedGoogle Scholar
  172. 172.
    Hawn TR, Verbon A, Janer M, Zhao LP, Beutler B, Aderem A. Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc Natl Acad Sci USA. 2005;102(7):2487–9. doi: 10.1073/pnas.0409831102.PubMedCentralPubMedGoogle Scholar
  173. 173.
    Bochud PY, Sinsimer D, Aderem A, Siddiqui MR, Saunderson P, Britton S, et al. Polymorphisms in Toll-like receptor 4 (TLR4) are associated with protection against leprosy. Eur J Clin Microbiol Infect Dis. 2009;28(9):1055–65. doi: 10.1007/s10096-009-0746-0.PubMedCentralPubMedGoogle Scholar
  174. 174.
    Yuan FF, Marks K, Wong M, Watson S, de Leon E, McIntyre PB, et al. Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol. 2008;86(3):268–70. doi: 10.1038/sj.icb.7100155.PubMedGoogle Scholar
  175. 175.
    Karoly E, Fekete A, Banki NF, Szebeni B, Vannay A, Szabo AJ, et al. Heat shock protein 72 (HSPA1B) gene polymorphism and Toll-like receptor (TLR) 4 mutation are associated with increased risk of urinary tract infection in children. Pediatr Res. 2007;61(3):371–4. doi: 10.1203/pdr.0b013e318030d1f4.PubMedGoogle Scholar
  176. 176.
    Yin X, Hou T, Liu Y, Chen J, Yao Z, Ma C, et al. Association of Toll-like receptor 4 gene polymorphism and expression with urinary tract infection types in adults. PLoS One. 2010;5(12):e14223. doi: 10.1371/journal.pone.0014223.PubMedCentralPubMedGoogle Scholar
  177. 177.
    Ertan P, Berdeli A, Yilmaz O, Gonulal DA, Yuksel H. LY96, UPKIB mutations and TLR4, CD14, MBL polymorphisms in children with urinary tract infection. Indian J Pediatr. 2011;78(10):1229–33. doi: 10.1007/s12098-011-0399-8.PubMedGoogle Scholar
  178. 178.
    Akil I, Ozkinay F, Onay H, Canda E, Gumuser G, Kavukcu S. Assessment of Toll-like receptor-4 gene polymorphism on pyelonephritis and renal scar. Int J Immunogenet. 2012;39(4):303–7. doi: 10.1111/j.1744-313X.2012.01090.x.PubMedGoogle Scholar
  179. 179.
    Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, et al. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS One. 2009;4(6):e5990. doi: 10.1371/journal.pone.0005990.PubMedCentralPubMedGoogle Scholar
  180. 180.
    Ozturk A, Vieira AR. TLR4 as a risk factor for periodontal disease: a reappraisal. J Clin Periodontol. 2009;36(4):279–86. doi: 10.1111/j.1600-051X.2009.01370.x.PubMedGoogle Scholar
  181. 181.
    Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol. 2000;1(5):398–401. doi: 10.1038/80833.PubMedGoogle Scholar
  182. 182.
    Tal G, Mandelberg A, Dalal I, Cesar K, Somekh E, Tal A, et al. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis. 2004;189(11):2057–63. doi: 10.1086/420830.PubMedGoogle Scholar
  183. 183.
    Mandelberg A, Tal G, Naugolny L, Cesar K, Oron A, Houri S, et al. Lipopolysaccharide hyporesponsiveness as a risk factor for intensive care unit hospitalization in infants with respiratory syncitial virus bronchiolitis. Clin Exp Immunol. 2006;144(1):48–52. doi: 10.1111/j.1365-2249.2006.03030.x.PubMedCentralPubMedGoogle Scholar
  184. 184.
    Awomoyi AA, Rallabhandi P, Pollin TI, Lorenz E, Sztein MB, Boukhvalova MS, et al. Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J Immunol. 2007;179(5):3171–7.PubMedGoogle Scholar
  185. 185.
    Paulus SC, Hirschfeld AF, Victor RE, Brunstein J, Thomas E, Turvey SE. Common human Toll-like receptor 4 polymorphisms-role in susceptibility to respiratory syncytial virus infection and functional immunological relevance. Clin Immunol. 2007;123(3):252–7. doi: 10.1016/j.clim.2007.03.003.PubMedGoogle Scholar
  186. 186.
    Lofgren J, Marttila R, Renko M, Ramet M, Hallman M. Toll-like receptor 4 Asp299Gly polymorphism in respiratory syncytial virus epidemics. Pediatr Pulmonol. 2010;45(7):687–92. doi: 10.1002/ppul.21248.PubMedGoogle Scholar
  187. 187.
    Goutaki M, Haidopoulou K, Pappa S, Tsakiridis P, Frydas E, Eboriadou M, et al. The role of TLR4 and CD14 polymorphisms in the pathogenesis of respiratory syncytial virus bronchiolitis in greek infants. Int J Immunopathol Pharmacol. 2014;27(4):563–72.PubMedGoogle Scholar
  188. 188.
    Bhuvanendran S, Hussin HM, Meran LP, Anthony AA, Zhang L, Burch LH, et al. Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and typhoid susceptibility in Asian Malay population in Malaysia. Microbes Infect. 2011;13(10):844–51. doi: 10.1016/j.micinf.2011.04.007.PubMedGoogle Scholar
  189. 189.
    Van der Graaf CA, Netea MG, Morre SA, Den Heijer M, Verweij PE, Van der Meer JW, et al. Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw. 2006;17(1):29–34.PubMedGoogle Scholar
  190. 190.
    Rezazadeh M, Hajilooi M, Rafiei A, Haidari M, Nikoopour E, Kerammat F, et al. TLR4 polymorphism in Iranian patients with brucellosis. J Infect. 2006;53(3):206–10. doi: 10.1016/j.jinf.2005.10.018.PubMedGoogle Scholar
  191. 191.
    Mockenhaupt FP, Cramer JP, Hamann L, Stegemann MS, Eckert J, Oh NR, et al. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci USA. 2006;103(1):177–82. doi: 10.1073/pnas.0506803102.PubMedCentralPubMedGoogle Scholar
  192. 192.
    Mockenhaupt FP, Hamann L, von Gaertner C, Bedu-Addo G, von Kleinsorgen C, Schumann RR, et al. Common polymorphisms of Toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J Infect Dis. 2006;194(2):184–8. doi: 10.1086/505152.PubMedGoogle Scholar
  193. 193.
    Kuong VV, Avetikov DS, Shlykova OA, Izmailova OV, Kaidashev IP. Incidence of odontogenic phlegmon associated with polymorphic variant 896A/G of gene TLR4, but not with 2258G/A of gene TLR2. Klin Khir. 2014;10:54–6.PubMedGoogle Scholar
  194. 194.
    Al-Qahtani AA, Al-Anazi MR, Al-Zoghaibi F, Abdo AA, Sanai FM, Khan MQ, et al. The association of Toll-like receptor 4 polymorphism with hepatitis C virus infection in Saudi Arabian patients. Biomed Res Int. 2014;2014:357062. doi: 10.1155/2014/357062.PubMedCentralPubMedGoogle Scholar
  195. 195.
    Ajdary S, Ghamilouie MM, Alimohammadian MH, Riazi-Rad F, Pakzad SR. Toll-like receptor 4 polymorphisms predispose to cutaneous leishmaniasis. Microbes Infect. 2011;13(3):226–31. doi: 10.1016/j.micinf.2010.10.018.PubMedGoogle Scholar
  196. 196.
    Senhaji N, Diakite B, Serbati N, Zaid Y, Badre W, Nadifi S. Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms: new data and a meta-analysis. BMC Gastroenterol. 2014;14(1):206. doi: 10.1186/s12876-014-0206-x.PubMedCentralPubMedGoogle Scholar
  197. 197.
    Morre SA, Murillo LS, Spaargaren J, Fennema HS, Pena AS. Role of the Toll-like receptor 4 Asp299Gly polymorphism in susceptibility to Candida albicans infection. J Infect Dis. 2002;186(9):1377–9. doi: 10.1086/344328 (author reply 9).PubMedGoogle Scholar
  198. 198.
    Rasouli M, Keshavarz M, Kalani M, Moravej A, Kiany S, Badiee P. Toll-like receptor 4 (TLR4) polymorphisms in Iranian patients with visceral leishmaniasis. Mol Biol Rep. 2012;39(12):10795–802. doi: 10.1007/s11033-012-1973-5.PubMedGoogle Scholar
  199. 199.
    Weitzel T, Zulantay I, Danquah I, Hamann L, Schumann RR, Apt W, et al. Mannose-binding lectin and Toll-like receptor polymorphisms and Chagas disease in Chile. Am J Trop Med Hyg. 2012;86(2):229–32. doi: 10.4269/ajtmh.2012.11-0539.PubMedCentralPubMedGoogle Scholar
  200. 200.
    Zafra G, Florez O, Morillo CA, Echeverria LE, Martin J, Gonzalez CI. Polymorphisms of Toll-like receptor 2 and 4 genes in Chagas disease. Mem Inst Oswaldo Cruz. 2008;103(1):27–30.PubMedGoogle Scholar
  201. 201.
    Awasthi S. Toll-like receptor-4 modulation for cancer immunotherapy. Front Immunol. 2014;5:328. doi: 10.3389/fimmu.2014.00328.PubMedCentralPubMedGoogle Scholar
  202. 202.
    Zhang K, Zhou B, Wang Y, Rao L, Zhang L. The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis. Eur J Cancer. 2013;49(4):946–54. doi: 10.1016/j.ejca.2012.09.022.PubMedGoogle Scholar
  203. 203.
    Davis ML, LeVan TD, Yu F, Sayles H, Sokolove J, Robinson W, et al. Associations of Toll-like receptor (TLR)-4 single nucleotide polymorphisms and rheumatoid arthritis disease progression: an observational cohort study. Int Immunopharmacol. 2015;24(2):346–52. doi: 10.1016/j.intimp.2014.12.030.PubMedGoogle Scholar
  204. 204.
    Karasneh J, Bani-Hani M, Alkhateeb A, Hassan A, Alzoubi F, Thornhill M. TLR2, TLR4 and CD86 gene polymorphisms in recurrent aphthous stomatitis. J Oral Pathol Med. 2014;. doi: 10.1111/jop.12298.Google Scholar
  205. 205.
    Alvarez-Rodriguez L, Munoz Cacho P, Lopez-Hoyos M, Beares I, Mata C, Calvo-Alen J, et al. Toll-like receptor 4 gene polymorphism and giant cell arteritis susceptibility: a cumulative meta-analysis. Autoimmun Rev. 2011;10(12):790–2. doi: 10.1016/j.autrev.2011.06.002.PubMedGoogle Scholar
  206. 206.
    Chen S. Association between the TLR4 +896A > G (Asp299Gly) polymorphism and asthma: a systematic review and meta-analysis. J Asthma. 2012;49(10):999–1003. doi: 10.3109/02770903.2012.738270.PubMedGoogle Scholar
  207. 207.
    Yin YW, Sun QQ, Hu AM, Liu HL, Wang Q, Zhang BB. Toll-like receptor 4 gene Asp299Gly polymorphism in myocardial infarction: a meta-analysis of 15,148 subjects. Hum Immunol. 2014;75(2):163–9. doi: 10.1016/j.humimm.2013.11.005.PubMedGoogle Scholar
  208. 208.
    Tizaoui K, Kaabachi W, Hamzaoui K, Hamzaoui A. Association of single nucleotide polymorphisms in Toll-like receptor genes with asthma risk: a systematic review and meta-analysis. Allergy Asthma Immunol Res. 2015;7(2):130–40. doi: 10.4168/aair.2015.7.2.130.PubMedCentralPubMedGoogle Scholar
  209. 209.
    Lorenz E, Hallman M, Marttila R, Haataja R, Schwartz DA. Association between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in the finnish population. Pediatr Res. 2002;52(3):373–6. doi: 10.1203/00006450-200209000-00011.PubMedGoogle Scholar
  210. 210.
    Radstake TR, Franke B, Hanssen S, Netea MG, Welsing P, Barrera P, et al. The Toll-like receptor 4 Asp299Gly functional variant is associated with decreased rheumatoid arthritis disease susceptibility but does not influence disease severity and/or outcome. Arthritis Rheum. 2004;50(3):999–1001. doi: 10.1002/art.20114.PubMedGoogle Scholar
  211. 211.
    Torok HP, Glas J, Tonenchi L, Mussack T, Folwaczny C. Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol. 2004;112(1):85–91. doi: 10.1016/j.clim.2004.03.002.PubMedGoogle Scholar
  212. 212.
    Rudofsky G Jr, Reismann P, Witte S, Humpert PM, Isermann B, Chavakis T, et al. Asp299Gly and Thr399Ile genotypes of the TLR4 gene are associated with a reduced prevalence of diabetic neuropathy in patients with type 2 diabetes. Diabetes Care. 2004;27(1):179–83.PubMedGoogle Scholar
  213. 213.
    Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature. 2002;420(6913):324–9. doi: 10.1038/Nature01182.PubMedGoogle Scholar
  214. 214.
    Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature. 2002;420(6913):329–33. doi: 10.1038/Nature01180.PubMedGoogle Scholar
  215. 215.
    Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell. 2006;125(5):943–55. doi: 10.1016/j.cell.2006.03.047.PubMedGoogle Scholar
  216. 216.
    Dunne A, Ejdeback M, Ludidi PL, O’Neill LAJ, Gay NJ. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem. 2003;278(42):41443–51. doi: 10.1074/jbc.M301742200.PubMedGoogle Scholar
  217. 217.
    Vogel SN, Fitzgerald KA, Fenton MJ. TLRs: differential adapter utilization by Toll-like receptors mediates TLR-specific patterns of gene expression. Mol Interv. 2003;3(8):466–77. doi: 10.1124/mi.3.8.466.PubMedGoogle Scholar
  218. 218.
    Jeyaseelan S, Manzer R, Young SK, Yamamoto M, Akira S, Mason RJ, et al. Toll-IL-1 receptor domain-containing adaptor protein is critical for early lung immune responses against Escherichia coli lipopolysaccharide and viable Escherichia coli. J Immunol. 2005;175(11):7484–95.PubMedGoogle Scholar
  219. 219.
    Jeyaseelan S, Young SK, Yamamoto M, Arndt PG, Akira S, Kolls JK, et al. Toll/IL-1R domain-containing adaptor protein (TIRAP) is a critical mediator of antibacterial defense in the lung against Klebsiella pneumoniae but not Pseudomonas aeruginosa. J Immunol. 2006;177(1):538–47.PubMedGoogle Scholar
  220. 220.
    Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY, et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet. 2007;39(4):523–8. doi: 10.1038/Ng1976.PubMedCentralPubMedGoogle Scholar
  221. 221.
    Mansell A, Brint E, Gould JA, O’Neill LA, Hertzog PJ. Mal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-κB activation by Toll-like receptor (TLR)-2 and TLR4. J Biol Chem. 2004;279(36):37227–30. doi: 10.1074/jbc.C400289200.PubMedGoogle Scholar
  222. 222.
    Castiblanco J, Varela DC, Castano-Rodriguez N, Rojas-Villarraga A, Hincape ME, Anaya JM. TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect Genet Evol. 2008;8(5):541–4. doi: 10.1016/j.meegid.2008.03.001.PubMedGoogle Scholar
  223. 223.
    Dissanayeke SR, Levin S, Pienaar S, Wood K, Eley B, Beatty D, et al. Polymorphic variation in TIRAP is not associated with susceptibility to childhood TB but may determine susceptibility to TBM in some ethnic groups. PLoS One. 2009;4(8):e6698. doi: 10.1371/journal.pone.0006698.PubMedCentralPubMedGoogle Scholar
  224. 224.
    Selvaraj P, Harishankar M, Singh B, Jawahar MS, Banurekha VV. Toll-like receptor and TIRAP gene polymorphisms in pulmonary tuberculosis patients of South India. Tuberculosis (Edinb). 2010;90(5):306–10. doi: 10.1016/j.tube.2010.08.001.Google Scholar
  225. 225.
    Nejentsev S, Thye T, Szeszko JS, Stevens H, Balabanova Y, Chinbuah AM, et al. Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat Genet. 2008;40(3):261–2. doi: 10.1038/Ng0308-261.PubMedGoogle Scholar
  226. 226.
    Miao R, Li J, Sun Z, Xu F, Shen H. Meta-analysis on the association of TIRAP S180L variant and tuberculosis susceptibility. Tuberculosis (Edinb). 2011;91(3):268–72. doi: 10.1016/j.tube.2011.01.006.Google Scholar
  227. 227.
    Hawn TR, Dunstan SJ, Thwaites GE, Simmons CP, Thuong NT, Lan NTN, et al. A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J Infect Dis. 2006;194(8):1127–34. doi: 10.1086/507907.PubMedCentralPubMedGoogle Scholar
  228. 228.
    Zhang YX, Xue Y, Liu JY, Zhao MY, Li FJ, Zhou JM, et al. Association of TIRAP (MAL) gene polymorphisms with susceptibility to tuberculosis in a Chinese population. Genet Mol Res. 2011;10(1):7–15. doi: 10.4238/vol10-1gmr980.PubMedGoogle Scholar
  229. 229.
    Hamann L, Kumpf O, Schuring RP, Alpsoy E, Bedu-Addo G, Bienzle U, et al. Low frequency of the TIRAP S180L polymorphism in Africa, and its potential role in malaria, sepsis, and leprosy. Bmc Med Genet. 2009;. doi: 10.1186/1471-2350-10-65.PubMedCentralPubMedGoogle Scholar
  230. 230.
    Ferwerda B, Alonso S, Banahan K, McCall MBB, Giamarellos-Bourboulis EJ, Ramakers BP, et al. Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock. Proce Natl Acad Sci USA. 2009;106(25):10272–7. doi: 10.1073/pnas.0811273106.Google Scholar
  231. 231.
    Song ZJ, Tong CY, Sun Z, Shen Y, Yao CL, Jiang JJ, et al. Genetic variants in the TIRAP gene are associated with increased risk of sepsis-associated acute lung injury. Bmc Med Genet. 2010;. doi: 10.1186/1471-2350-11-168.Google Scholar
  232. 232.
    Zakeri S, Pirahmadi S, Mehrizi AA, Djadid ND. Genetic variation of TLR-4, TLR-9 and TIRAP genes in Iranian malaria patients. Malar J. 2011;10:77. doi: 10.1186/1475-2875-10-77.PubMedCentralPubMedGoogle Scholar
  233. 233.
    Esposito S, Molteni CG, Zampiero A, Baggi E, Lavizzari A, Semino M, et al. Role of polymorphisms of Toll-like receptor (TLR) 4, TLR9, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and FCGR2A genes in malaria susceptibility and severity in Burundian children. Malar J. 2012;11:196. doi: 10.1186/1475-2875-11-196.PubMedCentralPubMedGoogle Scholar
  234. 234.
    Ramasawmy R, Cunha-Neto E, Fae KC, Borba SCP, Teixeira PC, Ferreira SCP, et al. Heterozygosity for the S180L Variant of MAL/TIRAP, a gene expressing an adaptor protein in the Toll-like receptor pathway, is associated with lower risk of developing chronic chagas cardiomyopathy. J Infect Dis. 2009;199(12):1838–45. doi: 10.1086/599212.PubMedGoogle Scholar
  235. 235.
    Durrani O, Banahan K, Sheedy FJ, McBride L, Ben-Chetrit E, Greiner K, et al. TIRAP Ser180Leu polymorphism is associated with Behcet’s disease. Rheumatology (Oxford). 2011;50(10):1760–5. doi: 10.1093/rheumatology/ker200.Google Scholar
  236. 236.
    Moser KL, Neas BR, Salmon JE, Yu H, Gray-McGuire C, Asundi N, et al. Genome scan of human systemic lupus erythematosus: Evidence for linkage on chromosome 1q in African–American pedigrees. Proc Natl Acad Sci USA. 1998;95(25):14869–74. doi: 10.1073/pnas.95.25.14869.PubMedCentralPubMedGoogle Scholar
  237. 237.
    Lindqvist AKB, Steinsson K, Johanneson B, Kristjansdottir H, Arnasson A, Grondal G, et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun. 2000;14(2):169–78. doi: 10.1006/jaut.1999.0357.PubMedGoogle Scholar
  238. 238.
    Rupasree Y, Naushad S, Rajasekhar L, Uma A, Kutala V. Association of TLR4 (D299G, T399I), TLR9 -1486T > C, TIRAP S180L and TNF-alpha promoter (-1031, -863, -857) polymorphisms with risk for systemic lupus erythematosus among South Indians. Lupus. 2014;. doi: 10.1177/0961203314549792.PubMedGoogle Scholar
  239. 239.
    Sheedy FJ, Marinou I, O’Neill LAJ, Wilson AG. The Mal/TIRAP S180L and TLR4 G299D polymorphisms are not associated with susceptibility to, or severity of, rheumatoid arthritis. Ann Rheum Dis. 2008;67(9):1328–31. doi: 10.1136/ard.2007.083337.PubMedGoogle Scholar
  240. 240.
    Cantaert T, Stone M, ter Borg M, de Vries N, Wilson A, Tak P, et al. A functional variant of TIR-domain-containing adaptor protein (TIRAP) is not associated with spondyloarthritis. Clin Immunol. 2008;127:S85. doi: 10.1016/j.clim.2008.03.238.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Atta-ur-Rehman School of Applied Biosciences (ASAB)National University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.Department of ZoologyUniversity of SargodhaSargodhaPakistan

Personalised recommendations