Advertisement

Immunologic Research

, Volume 61, Issue 1–2, pp 160–163 | Cite as

Lupus and leprosy: beyond the coincidence

  • F. M. Ribeiro
  • V. E. Gomez
  • E. M. N. Albuquerque
  • E. M. Klumb
  • Y. Shoenfeld
DIAGNOSTICS AND ENVIRONMENTAL FACTORS

Abstract

Systemic lupus erythematous (SLE) is an autoimmune disease that presents an increased susceptibility to infections which may trigger reactivation. Disease flares have been mostly associated with parvovirus B19, cytomegalovirus, EBV and Mycobacterium tuberculosis infections, but it is probable that many other agents may also induce innate and adaptive immune system stimulation including the production of autoantibodies as ANA, anti nDNA and anti-ß2-GPI mainly in lepromatous leprosy. Mycobacterium leprae not only may determine symptoms that mimic lupus flares, including autoantibodies production, but could also act as a trigger for lupus reactivation; however, its association is still not fully explored. As demonstrated for tuberculosis, it is quite possible that molecular mimicry may also be involved in the interface of these two diseases. Some studies reported shared epitopes among idiotypes derived from 8E7 and TH9 lepromatous antibodies and those obtained from SLE patients, and it could partially explain the triggering phenomenon of SLE caused by M. leprae. We report and discuss three Brazilian patients whose disease was inactive and presented disease flares concurrently with the diagnosis of leprosy.

Keywords

Systemic lupus erythematosus Leprosy Hansen disease 

Notes

Conflict of interest

None.

References

  1. 1.
    Hsu TC, Tsay GJ. Human parvovirus B19 infection in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2001;40:152–7.CrossRefGoogle Scholar
  2. 2.
    Hemauer A, Beckenlehner K, Wolf H, Lang B, Modrow S. Acute parvovirus B19 infection in connection with a flare of systemic lupus erythematodes in a female patient. J Clin Virol. 1999;14:73–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Goddard GZ, Shoenfeld Y. Infections and SLE. Autoimmunity. 2005;38:473–85.CrossRefGoogle Scholar
  4. 4.
    Hayashi T, Lee S, Ogasawara H, Sekigawa I. Exacerbation of systemic lupus erythematosus related to cytomegalovirus infection. Lupus. 1998;7:561–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Francis L, Perl A. Infection in systemic lupus erythematosus: friend or foe? Int J Clin Rheumtol. 2010;5:59–74.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ribeiro FM, Szyper-Kravitz M, Klumb EM, et al. Can lupus flares be associated with tuberculosis infection? Clin Rev Allergy Immunol. 2010;38:163–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Shoenfeld Y, Isenberg DA. Mycobacteria and autoimmunity. Immunol Today. 1988;9:178–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Sela O, El-Roeiy A, DA Isenberg J, et al. A common anti-DNA antibody idiotype in sera of patients with active pulmonary tuberculosis. Arthritis Rheum. 1987;30:50–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Carducci R, Teralbini CGL, Tak CG. Autoantibodies in leprosy. Int J Lepr. 1978;58:171–5.Google Scholar
  10. 10.
    Guedes Barbosa LS, Gilbrut B, Shoenfeld Y, Sheinberg MA. Autoantibodies in leprosy sera. Clin Rheumatol. 1996;15:26–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Eichelmann K, González González SE, Salas-Alanis JC, Ocampo-Candiani J. Leprosy. An update: definition, pathogenesis, classification, diagnosis, and treatment. Actas Dermosifiliogr. 2013;104:554–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Global leprosy situation. Wkly Epidemiol Rec. 2010;85:337–48.Google Scholar
  13. 13.
    Gulia A, Fried I, Massone C. New insights in the pathogenesis and genetics of leprosy. F1000 Medicine Reports. 2010;27:2.Google Scholar
  14. 14.
    Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clin Microbiol Rev. 2006;19:338–81.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Demangel C, Britton WJ. Interaction of dendritic cells with mycobacteria: where the action starts. Immunol Cell Biol. 2000;78:318–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Rodrigues LS, da Silva Maeda E, et al. Mycobacterium leprae induces insulin-like growth factor and promotes survival of Schwann cells upon serum withdrawal. Cell Microbiol. 2010;12:42–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Scollard DM, Smith T, Bhoopat L, Theetranont C, Rangdaeng S, Morens DM. Epidemiologic characteristics of leprosy reactions. Int J Lepr Other Mycobact Dis. 1994;1994(62):559–67.Google Scholar
  18. 18.
    Kumar B, Dogra S, Kaur I. Epidemiological characteristics of leprosy reactions: 15 years experience from North India. Int J Lepr Other Mycobact Dis. 2004;72:125–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Salvi S, Chopra A. Leprosy in a rheumatology setting: a challenging mimic to expose. Clin Rheumatol. 2013;32:1557–63.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Teixeira Júnior GJ, Silva CEF, Magalhães V. Application of the diagnostic criteria for systemic lupus erythematosus to patients with multibacillary leprosy. Rev Soc Bras Med Trop. 2011;44:85–90.PubMedCrossRefGoogle Scholar
  21. 21.
    la Torre Garcia-de. I. Autoimmune phenomena in leprosy, particularly antinuclear antibodies and rheumatoid factor. J Rheumatol. 1993;20:900–3.Google Scholar
  22. 22.
    Kroumpouzos G, Vareltzidis A, Konstadoulakis MM, et al. Evaluation of the autoimmune response in leprosy. Lepr Rev. 1993;64:199–207.PubMedGoogle Scholar
  23. 23.
    Miller RA, Wener MH, Harnisch JP, Gilliland BC. The limited spectrum of antinuclear antibodies in leprosy. J Rheumatol. 1987;14:108–10.PubMedGoogle Scholar
  24. 24.
    Sharma VK, Saha K, Sehgal VN. Serum immunoglobulins and autoantibodies during and after erythema nodosum leprosum (ENL). Int J Lepr Other Mycobact Dis. 1982;50:159–63.PubMedGoogle Scholar
  25. 25.
    Masala C, Amendolea MA, Nuti M, Riccarducci R, Tarabini CG, Tarabini CG. Autoanibodies in leprosy. Int J Lepr Other Mycobac Dis. 1979;47:171–5.Google Scholar
  26. 26.
    Guedes-Barbosa LS, Gilbrut B, Shoenfeld Y, Scheinberg MA. Autoantibodies in leprosy sera. Clin Rheumatol. 1996;15:26–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Zandman-Goddard G, Blank M, Shoenfeld Y. Antiphospholipid antibodies and infections-drugs. In: Asherson RA, Cervera R, Piette JC, Shoenfeld Y, editors. The antiphospholipid syndrome II. Amsterdan: Elsevier Science; 2002. p. 343–60.CrossRefGoogle Scholar
  28. 28.
    Elbeialy A, Strassburger-Lorna K, Altsumi T, et al. Antiphospholipid antibodies in leprotic patients: a correlation with disease manifestation. Clin Exp Rheumatol. 2000;18:492–4.PubMedGoogle Scholar
  29. 29.
    Loizou S, Singh S, Wypkema E, Asherson RA. Anticardiolipin anti- beta2-glycoprotein I and antiprothrombin antibodies in black South African patients with infectious disease. Ann Rheum Dis. 2003;62:1106–11.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    de Laranaga GF, Forastiero RR, Martinuzzo ME, et al. High prevalence of antiphospholipid antibodies in leprosy: evaluation of antigen reactivity. Lupus. 2000;9:594–600.CrossRefGoogle Scholar
  31. 31.
    Bonfa E, Llovet R, Scheinberg M, de Souza JM, Elkon KB. Comparison between autoantibodies in malaria and leprosy with lupus. Clin Exp Immunol. 1987;70:529–37.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Hojnik M, Gilburd B, Ziporen L, et al. Anticardiolipin antibodies in infections are heterogeneous in their dependency on ß2-GPI: analysis of anticardiolipina antibodies in leprosy. Lupus. 1994;3:515–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Levy RA, Pierangeli SA, Espinola RG. Antiphospholipid beta-2 glycoprotein I dependency assay to determine antibody pathogenicity. Arthritis Rheuma. 2000;43(suppl):I476.Google Scholar
  34. 34.
    Ribeiro SLE, Pereira HLA, Silva NP, Souza AWS, Sato EI. Anti- ß2 glycoprotein I antibodies are highly prevalent in a large number of Brazilian leprosy patients. Acta Reumatol Port. 2011;36:30–7.PubMedGoogle Scholar
  35. 35.
    Asherson RA, Shoenfeld Y. The role of infections in the pathogenesis of catasthrophic antiphospholipid syndrome—molecular mimicry? J Rheumatol. 2000;27:12–4.PubMedGoogle Scholar
  36. 36.
    Shoenfeld Y, Isenberg DA. Mycobacteria and autoimmunity. Immunol Today. 1988;9:178–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Shoenfeld Y, Vilner Y, Coates AR, et al. Monoclonal anti- tuberculosis antibodies react with DNA and monoclonal anti- DNA autoantibodies react with Mycobacterium tuberculosis. Clin Exp Immunol. 1986;66:255–61.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Amital-Teplizic H, Avinoach I, Coates AR, Kooperman O, Blank M, Shoenfeld Y. Binding of monoclonal anti-DNA and anti-TB glycolipids to brain tissue. Autoimmunity. 1989;4:277–87.CrossRefGoogle Scholar
  39. 39.
    Sela O, El-Roeiy A, Isenberg DA, et al. A common anti-DNA antibody idiotype in sera of patients with active pulmonary tuberculosis. Arthritis Rheum. 1987;30:50–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Mackworth-Young CG, Sabbaga J, Schwartz RS. Idiotypic markers of polyclonal B cell activation. Public idiotypes shared by monoclonal antibodies derived from patients with systemic lupus erythematosus or leprosy. J Clin Invest. 1987;79:572–81.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Mackworth-Young CG. Cross-reactive idiotypes in sera from patients with leprosy, lupus and Lyme disease and from healthy individuals. Clin Exp Immunol. 1990;79:78–82.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Mackworth-Young CG, Cairns E, Sabbaga J, et al. Comparative study of idiotypes on monoclonal antibodies derived from patients with lupus and leprosy and from normal individuals. J Autoimmunity. 1990;3:415–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • F. M. Ribeiro
    • 1
  • V. E. Gomez
    • 1
  • E. M. N. Albuquerque
    • 1
  • E. M. Klumb
    • 1
  • Y. Shoenfeld
    • 2
    • 3
  1. 1.Disciplina de ReumatologiaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Zabludowicz Center for Autoimmune DiseasesSheba Medical CenterTel-HashomerIsrael
  3. 3.Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune DiseasesTel-Aviv UniversityTel-HashomerIsrael

Personalised recommendations