Immunologic Research

, Volume 60, Issue 2–3, pp 320–329 | Cite as

Intravenous immunoglobulin exerts reciprocal regulation of Th1/Th17 cells and regulatory T cells in Guillain–Barré syndrome patients

  • Mohan S. Maddur
  • Magalie Rabin
  • Pushpa Hegde
  • Francis Bolgert
  • Moneger Guy
  • Jean-Michel Vallat
  • Laurent Magy
  • Jagadeesh Bayry
  • Srini V. Kaveri
PATHOGENESIS AND THERAPY IN AUTOIMMUNE DISEASES

Abstract

Guillain–Barré syndrome (GBS) is an acute, autoimmune inflammatory disorder of peripheral nervous system characterized by a severe functional motor weakness. Treatment with intravenous immunoglobulin (IVIg) is one of the approved and preferred therapeutic strategies for GBS. However, the mechanisms underlying the therapeutic benefit with IVIg in GBS are not completely understood. In the present study, we observed that GBS patients have increased frequencies of Th1 and Th17 cells, but reduced number of Foxp3+ regulatory T cells (Treg cells) with defective functions. We show that IVIg treatment in GBS patients results in a marked reduction in the frequency of Th1 and Th17 cells with a concomitant expansion of Treg cells. Importantly, IVIg-expanded Treg cells exhibited an increased T cell suppressive function. Together our results demonstrate that therapeutic benefit of IVIg in GBS patients implicates the reciprocal regulation of Th1/Th17 and Treg cells.

Keywords

Intravenous immunoglobulin IVIg Guillain–Barré syndrome Th1 cells Th17 cells Regulatory T cells 

Notes

Acknowledgments

This study was supported by Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie, Université Paris Descartes and Journées de Neurologie de Langue Française (M.R.). This work is partially supported by financial support from CSL Behring France.

References

  1. 1.
    Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001;345(10):747–55.CrossRefPubMedGoogle Scholar
  2. 2.
    Kaveri SV. Intravenous immunoglobulin: exploiting the potential of natural antibodies. Autoimmun Rev. 2012;11(11):792–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Seite JF, Shoenfeld Y, Youinou P, Hillion S. What is the contents of the magic draft IVIg? Autoimmun Rev. 2008;7(6):435–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Bayry J, Negi VS, Kaveri SV. Intravenous immunoglobulin therapy in rheumatic diseases. Nat Rev Rheumatol. 2011;7(6):349–59.CrossRefPubMedGoogle Scholar
  5. 5.
    Dalakas MC. Intravenous immunoglobulin in autoimmune neuromuscular diseases. JAMA. 2004;291(19):2367–75.CrossRefPubMedGoogle Scholar
  6. 6.
    Nussinovitch U, Shoenfeld Y. Intravenous immunoglobulin—indications and mechanisms in cardiovascular diseases. Autoimmun Rev. 2008;7(6):445–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012;367(21):2015–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaveri SV, Lacroix-Desmazes S, Bayry J. The antiinflammatory IgG. N Engl J Med. 2008;359(3):307–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Kaveri SV, Maddur MS, Hegde P, Lacroix-Desmazes S, Bayry J. Intravenous immunoglobulins in immunodeficiencies: more than mere replacement therapy. Clin Exp Immunol. 2011;164(Suppl 2):2–5.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Bayry J, Fournier EM, Maddur MS, Vani J, Wootla B, Siberil S, et al. Intravenous immunoglobulin induces proliferation and immunoglobulin synthesis from B cells of patients with common variable immunodeficiency: a mechanism underlying the beneficial effect of IVIg in primary immunodeficiencies. J Autoimmun. 2011;36(1):9–15.CrossRefPubMedGoogle Scholar
  11. 11.
    Bayry J, Lacroix-Desmazes S, Donkova-Petrini V, Carbonneil C, Misra N, Lepelletier Y, et al. Natural antibodies sustain differentiation and maturation of human dendritic cells. Proc Natl Acad Sci USA. 2004;101(39):14210–5.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Bayry J, Lacroix-Desmazes S, Hermine O, Oksenhendler E, Kazatchkine MD, Kaveri SV. Amelioration of differentiation of dendritic cells from CVID patients by intravenous immunoglobulin. Am J Med. 2005;118(12):1439–40.CrossRefPubMedGoogle Scholar
  13. 13.
    Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat Clin Pract Rheumatol. 2007;3(5):262–72.CrossRefPubMedGoogle Scholar
  14. 14.
    Vani J, Elluru S, Negi VS, Lacroix-Desmazes S, Kazatchkine MD, Bayry J, et al. Role of natural antibodies in immune homeostasis: IVIg perspective. Autoimmun Rev. 2008;7(6):440–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Negi VS, Elluru S, Siberil S, Graff-Dubois S, Mouthon L, Kazatchkine MD, et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol. 2007;27(3):233–45.CrossRefPubMedGoogle Scholar
  16. 16.
    Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 2008;29(12):608–15.CrossRefPubMedGoogle Scholar
  17. 17.
    Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13(3):176–89.CrossRefPubMedGoogle Scholar
  18. 18.
    Ballow M. The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. J Allergy Clin Immunol. 2011;127(2):315–23.CrossRefPubMedGoogle Scholar
  19. 19.
    Svetlicky N, Ortega-Hernandez OD, Mouthon L, Guillevin L, Thiesen HJ, Altman A, et al. The advantage of specific intravenous immunoglobulin (sIVIG) on regular IVIG: experience of the last decade. J Clin Immunol. 2013;33(Suppl 1):S27–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Hughes RA, Cornblath DR. Guillain–Barre syndrome. Lancet. 2005;366(9497):1653–66.CrossRefPubMedGoogle Scholar
  21. 21.
    van Doorn PA, Ruts L, Jacobs BC. Clinical features, pathogenesis, and treatment of Guillain–Barre syndrome. Lancet Neurol. 2008;7(10):939–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Eldar AH, Chapman J. Guillain–Barre syndrome and other immune mediated neuropathies: diagnosis and classification. Autoimmun Rev. 2014;13(4–5):525–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Li S, Jin T, Zhang HL, Yu H, Meng F, Concha Quezada H et al. Circulating Th17, Th22, and Th1 Cells are elevated in the Guillain–Barre syndrome and downregulated by IVIg treatments. Mediat Inflamm. 2014. doi: 10.1155/2014/740947.
  24. 24.
    Li XL, Dou YC, Liu Y, Shi CW, Cao LL, Zhang XQ, et al. Atorvastatin ameliorates experimental autoimmune neuritis by decreased Th1/Th17 cytokines and up-regulated T regulatory cells. Cell Immunol. 2011;271(2):455–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang HL, Zheng XY, Zhu J. Th1/Th2/Th17/Treg cytokines in Guillain–Barre syndrome and experimental autoimmune neuritis. Cytokine Growth Factor Rev. 2013;24(5):443–53.CrossRefPubMedGoogle Scholar
  26. 26.
    Li S, Yu M, Li H, Zhang H, Jiang Y. IL-17 and IL-22 in cerebrospinal fluid and plasma are elevated in Guillain–Barre syndrome. Mediat Inflamm. 2012;2012:260473.Google Scholar
  27. 27.
    Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol. 2009;9(6):393–407.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.CrossRefPubMedGoogle Scholar
  29. 29.
    Miossec P, Korn T, Kuchroo VK. Interleukin-17 and Type 17 helper T cells. N Engl J Med. 2009;361(9):888–98.CrossRefPubMedGoogle Scholar
  30. 30.
    Maddur MS, Miossec P, Kaveri SV, Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012;181(1):8–18.CrossRefPubMedGoogle Scholar
  31. 31.
    Roark CL, Huang Y, Jin N, Aydintug MK, Casper T, Sun D, et al. A canonical Vγ4 Vδ4+ γδ T cell population with distinct stimulation requirements which promotes the Th17 response. Immunol Res. 2013;55(1–3):217–30.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Sharma M, Kaveri SV, Bayry J. Th17 cells, pathogenic or not? TGF-β3 imposes the embargo. Cell Mol Immunol. 2013;10(2):101–2.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Fiocco U, Accordi B, Martini V, Oliviero F, Facco M, Cabrelle A, et al. JAK/STAT/PKCδ molecular pathways in synovial fluid T lymphocytes reflect the in vivo T helper-17 expansion in psoriatic arthritis. Immunol Res. 2014;58(1):61–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Su Z, Sun Y, Zhu H, Liu Y, Lin X, Shen H, et al. Th17 cell expansion in gastric cancer may contribute to cancer development and metastasis. Immunol Res. 2014;58(1):118–24.CrossRefPubMedGoogle Scholar
  35. 35.
    Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev. 2011;241(1):260–8.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H. The plasticity and stability of regulatory T cells. Nat Rev Immunol. 2013;13(6):461–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Wehrens EJ, Prakken BJ, van Wijk F. T cells out of control—impaired immune regulation in the inflamed joint. Nat Rev Rheumatol. 2013;9(1):34–42.CrossRefPubMedGoogle Scholar
  38. 38.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.CrossRefPubMedGoogle Scholar
  39. 39.
    Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010;11(1):7–13.CrossRefPubMedGoogle Scholar
  40. 40.
    Andre S, Tough DF, Lacroix-Desmazes S, Kaveri SV, Bayry J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am J Pathol. 2009;174(5):1575–87.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Kobezda T, Ghassemi-Nejad S, Mikecz K, Glant TT, Szekanecz Z. Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat Rev Rheumatol. 2014;10(3):160–70.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Pellerin L, Jenks JA, Begin P, Bacchetta R, Nadeau KC. Regulatory T cells and their roles in immune dysregulation and allergy. Immunol Res. 2014;58(2–3):358–68.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Pedroza-Pacheco I, Madrigal A, Saudemont A. Interaction between natural killer cells and regulatory T cells: perspectives for immunotherapy. Cell Mol Immunol. 2013;10(3):222–9.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Lin SJ, Lu CH, Yan DC, Lee PT, Hsiao HS, Kuo ML. Expansion of regulatory T cells from umbilical cord blood and adult peripheral blood CD4(+)CD25(+) T cells. Immunol Res. 2014;60(1):105–11.CrossRefPubMedGoogle Scholar
  45. 45.
    Harness J, McCombe PA. Increased levels of activated T-cells and reduced levels of CD4/CD25+ cells in peripheral blood of Guillain–Barre syndrome patients compared to controls. J Clin Neurosci. 2008;15(9):1031–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Chi LJ, Wang HB, Zhang Y, Wang WZ. Abnormality of circulating CD4(+)CD25(+) regulatory T cell in patients with Guillain–Barre syndrome. J Neuroimmunol. 2007;192(1–2):206–14.CrossRefPubMedGoogle Scholar
  47. 47.
    Hughes RA, Swan AV, van Doorn PA. Intravenous immunoglobulin for Guillain–Barre syndrome. Cochrane Database Syst Rev. 2012;7:CD002063.PubMedGoogle Scholar
  48. 48.
    van Doorn PA, Kuitwaard K, Walgaard C, van Koningsveld R, Ruts L, Jacobs BC. IVIG treatment and prognosis in Guillain–Barre syndrome. J Clin Immunol. 2010;30(Suppl 1):S74–8.CrossRefPubMedGoogle Scholar
  49. 49.
    El-Bayoumi MA, El-Refaey AM, Abdelkader AM, El-Assmy MM, Alwakeel AA, El-Tahan HM. Comparison of intravenous immunoglobulin and plasma exchange in treatment of mechanically ventilated children with Guillain–Barre syndrome: a randomized study. Crit Care. 2011;15(4):R164.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Harel M, Shoenfeld Y. Intravenous immunoglobulin and Guillain–Barre syndrome. Clin Rev Allergy Immunol. 2005;29(3):281–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Maddur MS, Othy S, Hegde P, Vani J, Lacroix-Desmazes S, Bayry J, et al. Immunomodulation by intravenous immunoglobulin: role of regulatory T cells. J Clin Immunol. 2010;30(Suppl 1):S4–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Bayry J, Mouthon L, Kaveri SV. Intravenous immunoglobulin expands regulatory T cells in autoimmune rheumatic disease. J Rheumatol. 2012;39(2):450–1.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt L, Moingeon P, et al. Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes”. Blood. 2008;112(8):3303–11.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, et al. Expansion of CD4+ CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood. 2008;111(2):715–22.CrossRefPubMedGoogle Scholar
  55. 55.
    Kessel A, Ammuri H, Peri R, Pavlotzky ER, Blank M, Shoenfeld Y, et al. Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. J Immunol. 2007;179(8):5571–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Massoud AH, Guay J, Shalaby KH, Bjur E, Ablona A, Chan D, et al. Intravenous immunoglobulin attenuates airway inflammation through induction of forkhead box protein 3-positive regulatory T cells. J Allergy Clin Immunol. 2012;129(6):1656–65 e3.CrossRefPubMedGoogle Scholar
  57. 57.
    Massoud AH, Yona M, Xue D, Chouiali F, Alturaihi H, Ablona A, et al. Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J Allergy Clin Immunol. 2014;133(3):853–63 e5.CrossRefPubMedGoogle Scholar
  58. 58.
    Olivito B, Taddio A, Simonini G, Massai C, Ciullini S, Gambineri E, et al. Defective FOXP3 expression in patients with acute Kawasaki disease and restoration by intravenous immunoglobulin therapy. Clin Exp Rheumatol. 2010;28(1 Suppl 57):93–7.PubMedGoogle Scholar
  59. 59.
    Tha-In T, Metselaar HJ, Bushell AR, Kwekkeboom J, Wood KJ. Intravenous immunoglobulins promote skin allograft acceptance by triggering functional activation of CD4+ Foxp3+ T cells. Transplantation. 2010;89(12):1446–55.CrossRefPubMedGoogle Scholar
  60. 60.
    Tsurikisawa N, Saito H, Oshikata C, Tsuburai T, Akiyama K. High-dose intravenous immunoglobulin treatment increases regulatory T cells in patients with eosinophilic granulomatosis with polyangiitis. J Rheumatol. 2012;39(5):1019–25.CrossRefPubMedGoogle Scholar
  61. 61.
    Trinath J, Hegde P, Sharma M, Maddur MS, Rabin M, Vallat JM, et al. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells. Blood. 2013;122(8):1419–27.CrossRefPubMedGoogle Scholar
  62. 62.
    Tjon AS, Tha-In T, Metselaar HJ, van Gent R, van der Laan LJ, Groothuismink ZM, et al. Patients treated with high-dose intravenous immunoglobulin show selective activation of regulatory T cells. Clin Exp Immunol. 2013;173(2):259–67.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Maddur MS, Vani J, Hegde P, Lacroix-Desmazes S, Kaveri SV, Bayry J. Inhibition of differentiation, amplification, and function of human TH17 cells by intravenous immunoglobulin. J Allergy Clin Immunol. 2011;127(3):823–30 e1-7.CrossRefPubMedGoogle Scholar
  64. 64.
    Maddur MS, Kaveri SV, Bayry J. Comparison of different IVIg preparations on IL-17 production by human Th17 cells. Autoimmun Rev. 2011;10(12):809–10.CrossRefPubMedGoogle Scholar
  65. 65.
    Maddur MS, Sharma M, Hegde P, Lacroix-Desmazes S, Kaveri SV, Bayry J. Inhibitory effect of IVIG on IL-17 production by Th17 cells is independent of anti-IL-17 antibodies in the immunoglobulin preparations. J Clin Immunol. 2013;33(Suppl 1):S62–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Othy S, Hegde P, Topcu S, Sharma M, Maddur MS, Lacroix-Desmazes S, et al. Intravenous gammaglobulin inhibits encephalitogenic potential of pathogenic T cells and interferes with their trafficking to the central nervous system, implicating sphingosine-1 phosphate receptor 1-mammalian target of rapamycin axis. J Immunol. 2013;190(9):4535–41.CrossRefPubMedGoogle Scholar
  67. 67.
    Othy S, Topcu S, Saha C, Kothapalli P, Lacroix-Desmazes S, Kasermann F, et al. Sialylation may be dispensable for reciprocal modulation of helper T cells by intravenous immunoglobulin. Eur J Immunol. 2014;44(7):2059–63.CrossRefPubMedGoogle Scholar
  68. 68.
    Liu G, Yang K, Burns S, Shrestha S, Chi H. The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol. 2010;11(11):1047–56.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Asbury AK, Cornblath DR. Assessment of current diagnostic criteria for Guillain–Barre syndrome. Ann Neurol. 1990;27(Suppl):S21–4.CrossRefPubMedGoogle Scholar
  70. 70.
    Merkies IS, Schmitz PI, van der Meche FG, Samijn JP, van Doorn PA. Clinimetric evaluation of a new overall disability scale in immune mediated polyneuropathies. J Neurol Neurosurg Psychiatry. 2002;72(5):596–601.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Graham RC, Hughes RA. A modified peripheral neuropathy scale: the Overall Neuropathy Limitations Scale. J Neurol Neurosurg Psychiatry. 2006;77(8):973–6.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity. 2013;38(3):414–23.CrossRefPubMedGoogle Scholar
  73. 73.
    Bayry J, Siberil S, Triebel F, Tough DF, Kaveri SV. Rescuing CD4+ CD25+ regulatory T-cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy. Drug Discov Today. 2007;12(13–14):548–52.CrossRefPubMedGoogle Scholar
  74. 74.
    Maddur MS, Trinath J, Rabin M, Vallat JM, Magy L, Balaji KN et al. Intravenous immunoglobulin-mediated expansion of regulatory T cells in autoimmune patients is associated with an increased prostaglandin E2 in the circulation. Cell Mol Immunol (in press).Google Scholar
  75. 75.
    Maddur MS, Sharma M, Hegde P, Stephen-Victor E, Pulendran B, Kaveri SV, et al. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand. Nat Commun. 2014;5:4092. doi: 10.1038/ncomms5092.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Jia S, Li C, Wang G, Yang J, Zu Y. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease. Clin Exp Immunol. 2010;162(1):131–7.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Kim DJ, Lee SK, Kim JY, Na BJ, Hur SE, Lee M, et al. Intravenous immunoglobulin g modulates peripheral blood Th17 and Foxp3(+) regulatory T cells in pregnant women with recurrent pregnancy loss. Am J Reprod Immunol. 2014;71(5):441–50.CrossRefPubMedGoogle Scholar
  78. 78.
    Lee SY, Jung YO, Ryu JG, Kang CM, Kim EK, Son HJ, et al. Intravenous immunoglobulin attenuates experimental autoimmune arthritis by inducing reciprocal regulation of th17 and treg cells in an interleukin-10-dependent manner. Arthritis Rheumatol. 2014;66(7):1768–78.CrossRefPubMedGoogle Scholar
  79. 79.
    Bayry J, Lacroix-Desmazes S, Carbonneil C, Misra N, Donkova V, Pashov A, et al. Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood. 2003;101(2):758–65.CrossRefPubMedGoogle Scholar
  80. 80.
    Bayry J, Lacroix-Desmazes S, Delignat S, Mouthon L, Weill B, Kazatchkine MD, et al. Intravenous immunoglobulin abrogates dendritic cell differentiation induced by interferon-alpha present in serum from patients with systemic lupus erythematosus. Arthritis Rheum. 2003;48(12):3497–502.CrossRefPubMedGoogle Scholar
  81. 81.
    Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Hermine O, Tough DF, Kaveri SV. Modulation of dendritic cell maturation and function by B lymphocytes. J Immunol. 2005;175(1):15–20.CrossRefPubMedGoogle Scholar
  82. 82.
    Aubin E, Lemieux R, Bazin R. Indirect inhibition of in vivo and in vitro T-cell responses by intravenous immunoglobulins due to impaired antigen presentation. Blood. 2010;115(9):1727–34.CrossRefPubMedGoogle Scholar
  83. 83.
    Othy S, Bruneval P, Topcu S, Dugail I, Delers F, Lacroix-Desmazes S, et al. Effect of IVIg on human dendritic cell-mediated antigen uptake and presentation: role of lipid accumulation. J Autoimmun. 2012;39(3):168–72.CrossRefPubMedGoogle Scholar
  84. 84.
    Wiedeman AE, Santer DM, Yan W, Miescher S, Kasermann F, Elkon KB. Contrasting mechanisms of interferon-alpha inhibition by intravenous immunoglobulin after induction by immune complexes versus Toll-like receptor agonists. Arthritis Rheum. 2013;65(10):2713–23.PubMedGoogle Scholar
  85. 85.
    Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419–26.CrossRefPubMedGoogle Scholar
  86. 86.
    Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13(8):566–77.PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Vitali C, Mingozzi F, Broggi A, Barresi S, Zolezzi F, Bayry J, et al. Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood. 2012;120(6):1237–45.CrossRefPubMedGoogle Scholar
  88. 88.
    Trinath J, Hegde P, Balaji KN, Kaveri SV, Bayry J. Intravenous immunoglobulin-mediated regulation of Notch ligands on human dendritic cells. J Allergy Clin Immunol. 2013;131(4):1255–7 7 e1.CrossRefPubMedGoogle Scholar
  89. 89.
    Cousens LP, Tassone R, Mazer BD, Ramachandiran V, Scott DW, De Groot AS. Tregitope update: mechanism of action parallels IVIg. Autoimmun Rev. 2013;12(3):436–43.CrossRefPubMedGoogle Scholar
  90. 90.
    Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature. 2011;475(7354):110–3.PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Bayry J, Bansal K, Kazatchkine MD, Kaveri SV. DC-SIGN and alpha2,6-sialylated IgG Fc interaction is dispensable for the anti-inflammatory activity of IVIg on human dendritic cells. Proc Natl Acad Sci USA. 2009;106(9):E24.PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Leontyev D, Katsman Y, Branch DR. Mouse background and IVIG dosage are critical in establishing the role of inhibitory Fcgamma receptor for the amelioration of experimental ITP. Blood. 2012;119(22):5261–4.CrossRefPubMedGoogle Scholar
  93. 93.
    Sharma M, Schoindre Y, Hegde P, Saha C, Maddur MS, Stephen-Victor E, et al. Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. Sci Rep. 2014;4:5672. doi: 10.1038/srep05672.PubMedGoogle Scholar
  94. 94.
    Campbell IK, Miescher S, Branch DR, Mott PJ, Lazarus AH, Han D, et al. Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils. J Immunol. 2014;192(11):5031–8.PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Bayry J, Lacroix-Desmazes S, Dasgupta S, Kazatchkine MD, Kaveri SV. Efficacy of regulatory T-cell immunotherapy: are inflammatory cytokines key determinants? Nat Rev Immunol. 2008;8(1). doi: 10.1038/nri2138-c1.
  96. 96.
    Maddur MS, Hegde P, Sharma M, Kaveri SV, Bayry J. B cells are resistant to immunomodulation by ‘IVIg-educated’ dendritic cells. Autoimmun Rev. 2011;11(2):154–6.CrossRefPubMedGoogle Scholar
  97. 97.
    Seite JF, Cornec D, Renaudineau Y, Youinou P, Mageed RA, Hillion S. IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood. 2010;116(10):1698–704.CrossRefPubMedGoogle Scholar
  98. 98.
    Seite JF, Goutsmedt C, Youinou P, Pers JO, Hillion S. Intravenous immunoglobulin induces a functional silencing program similar to anergy in human B cells. J Allergy Clin Immunol. 2014;133(1):181–8 e1-9.CrossRefPubMedGoogle Scholar
  99. 99.
    Moriguchi K, Miyamoto K, Takada K, Kusunoki S. Four cases of anti-ganglioside antibody-positive neuralgic amyotrophy with good response to intravenous immunoglobulin infusion therapy. J Neuroimmunol. 2011;238(1–2):107–9.CrossRefPubMedGoogle Scholar
  100. 100.
    Casulli S, Topcu S, Fattoum L, von Gunten S, Simon HU, Teillaud JL, et al. A differential concentration-dependent effect of IVIg on neutrophil functions: relevance for anti-microbial and anti-inflammatory mechanisms. PLoS One. 2011;6(10):e26469.PubMedCentralCrossRefPubMedGoogle Scholar
  101. 101.
    Semple JW, Kim M, Hou J, McVey M, Lee YJ, Tabuchi A, et al. Intravenous immunoglobulin prevents murine antibody-mediated acute lung injury at the level of neutrophil reactive oxygen species (ROS) production. PLoS One. 2012;7(2):e31357.PubMedCentralCrossRefPubMedGoogle Scholar
  102. 102.
    von Gunten S, Shoenfeld Y, Blank M, Branch DR, Vassilev T, Kasermann F, et al. IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nat Rev Immunol. 2014;14(5):349.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mohan S. Maddur
    • 1
    • 2
    • 3
    • 4
  • Magalie Rabin
    • 1
    • 2
  • Pushpa Hegde
    • 1
    • 2
  • Francis Bolgert
    • 5
  • Moneger Guy
    • 5
  • Jean-Michel Vallat
    • 6
  • Laurent Magy
    • 6
  • Jagadeesh Bayry
    • 1
    • 2
    • 3
    • 4
    • 7
  • Srini V. Kaveri
    • 1
    • 2
    • 3
    • 4
    • 7
  1. 1.Institut National de la Santé et de la Recherche Médicale Unité 1138ParisFrance
  2. 2.Centre de Recherche des CordeliersEquipe - Immunopathology and Therapeutic ImmunointerventionParisFrance
  3. 3.Sorbonne Universités, UMR S 1138 UPMC Univ Paris 06ParisFrance
  4. 4.UMR S 1138Université Paris DescartesParisFrance
  5. 5.Réanimation Neurologique, Neurologie 1Hôpital de la Pitié-SalpêtrièreParisFrance
  6. 6.Centre de Référence ‘Neuropathies Périphériques Rares’ et Service de NeurologieHôpital Universitaire LimogesLimogesFrance
  7. 7.International Associated Laboratory IMPACT (Institut National de la Santé et de la Recherche Médicale, France - Indian Council of Medical Research, India)National Institute of ImmunohaematologyMumbaiIndia

Personalised recommendations