Advertisement

Immunologic Research

, Volume 59, Issue 1–3, pp 12–22 | Cite as

Toll-like receptors and B cells: functions and mechanisms

  • Claire M. Buchta
  • Gail A. BishopEmail author
IMMUNOLOGY AT THE UNIVERSITY OF IOWA

Abstract

Numerous reports have described Toll-like receptor (TLR) functions in myeloid cells such as dendritic cells (DCs) and macrophages, but relatively fewer studies have examined TLR responses in B lymphocytes. B cells express a wide variety of TLRs and are highly activated after TLR ligation, leading to enhancements in B cell survival, surface molecule expression, cytokine and antibody production, and antigen presentation. During an immune response, B cells can receive signals through TLRs as well as the B cell antigen receptor (BCR) and/or CD40. TLR ligation synergizes with signals through these receptors and augments both innate and adaptive immune functions of B lymphocytes. Additionally, targeting B cell TLRs may provide new therapies against certain types of cancer as well as autoimmune diseases. Here, we summarize TLR expression and contributions to both normal and pathogenic functions in mouse and human B cells.

Keywords

B lymphocytes Toll-like receptors Antibody production Immunotherapy 

References

  1. 1.
    Botos I, Segal DM, Davies DR. The structural biology of Toll-like receptors. Structure. 2011;19(4):447–59.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Hashimoto C, Hudson KL, Anderson KV. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988;52(2):269–79.PubMedCrossRefGoogle Scholar
  3. 3.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388(6640):394–7.PubMedCrossRefGoogle Scholar
  4. 4.
    West AP, Koblansky AA, Ghosh S. Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol. 2006;22:409–37.PubMedCrossRefGoogle Scholar
  5. 5.
    Ostuni R, Zanoni I, Granucci F. Deciphering the complexity of Toll-like receptor signaling. Cell Mol Life Sci. 2010;67(24):4109–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Lund FE. Cytokine-producing B lymphocytes-key regulators of immunity. Curr Opin Immunol. 2008;20(3):332–8.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Oliver AM, Martin F, Kearney JF. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J Immunol. 1999;162(12):7198–207.PubMedGoogle Scholar
  8. 8.
    Jiang W, et al. TLR9 stimulation drives naive B cells to proliferate and to attain enhanced antigen presenting function. Eur J Immunol. 2007;37(8):2205–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Bernasconi NL, Onai N, Lanzavecchia A. A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood. 2003;101(11):4500–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Hornung V, et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002;168(9):4531–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Bekeredjian-Ding I, et al. Staphylococcus aureus protein A triggers T cell-independent B cell proliferation by sensitizing B cells for TLR2 ligands. J Immunol. 2007;178(5):2803–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Ruprecht CR, Lanzavecchia A. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol. 2006;36(4):810–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Dorner M, et al. Plasma cell toll-like receptor (TLR) expression differs from that of B cells, and plasma cell TLR triggering enhances immunoglobulin production. Immunology. 2009;128(4):573–9.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Mita Y, et al. Toll-like receptor 4 surface expression on human monocytes and B cells is modulated by IL-2 and IL-4. Immunol Lett. 2002;81(1):71–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Shin H, et al. B cells from periodontal disease patients express surface Toll-like receptor 4. J Leukoc Biol. 2009;85(4):648–55.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Jagannathan M, et al. TLR cross-talk specifically regulates cytokine production by B cells from chronic inflammatory disease patients. J Immunol. 2009;183(11):7461–70.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Bourke E, et al. The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood. 2003;102(3):956–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Bekeredjian-Ding IB, et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol. 2005;174(7):4043–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Gururajan M, Jacob J, Pulendran B. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS ONE. 2007;2(9):e863.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Genestier L, et al. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J Immunol. 2007;178(12):7779–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Marshall-Clarke S, et al. Polyinosinic acid is a ligand for toll-like receptor 3. J Biol Chem. 2007;282(34):24759–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Andersson J, et al. The mitogenic effect of lipopolysaccharide on bone marrow-derived mouse lymphocytes. Lipid A as the mitogenic part of the molecule. J Exp Med. 1973;137(4):943–53.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Chang WL, et al. Influenza virus infection causes global respiratory tract B cell response modulation via innate immune signals. J Immunol. 2007;178(3):1457–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Good KL, Avery DT, Tangye SG. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J Immunol. 2009;182(2):890–901.PubMedCrossRefGoogle Scholar
  25. 25.
    Yamazaki K, et al. Potentiation of TLR9 responses for human naive B-cell growth through RP105 signaling. Clin Immunol. 2010;135(1):125–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Miura Y, et al. RP105 is associated with MD-1 and transmits an activation signal in human B cells. Blood. 1998;92(8):2815–22.PubMedGoogle Scholar
  27. 27.
    Divanovic S, et al. Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105. J Leukoc Biol. 2007;82(2):265–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Ogata H, et al. The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J Exp Med. 2000;192(1):23–9.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Miyake K, et al. Murine B cell proliferation and protection from apoptosis with an antibody against a 105-kD molecule: unresponsiveness of X-linked immunodeficient B cells. J Exp Med. 1994;180(4):1217–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Kimoto M, Nagasawa K, Miyake K. Role of TLR4/MD-2 and RP105/MD-1 in innate recognition of lipopolysaccharide. Scand J Infect Dis. 2003;35(9):568–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Divanovic S, et al. Inhibition of TLR-4/MD-2 signaling by RP105/MD-1. J Endotoxin Res. 2005;11(6):363–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Divanovic S, et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol. 2005;6(6):571–8.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    DeFranco AL, Locksley RM, Robertson M. Immunity: the immune response in infectious and inflammatory disease. Sunderland: New Science Press; 2007.Google Scholar
  34. 34.
    Pasare C, Medzhitov R. Control of B-cell responses by Toll-like receptors. Nature. 2005;438(7066):364–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Gavin AL, et al. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science. 2006;314(5807):1936–8.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Nagai Y, et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006;24(6):801–12.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Welner RS, et al. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood. 2008;112(9):3753–61.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Hayashi EA, Akira S, Nobrega A. Role of TLR in B cell development: signaling through TLR4 promotes B cell maturation and is inhibited by TLR2. J Immunol. 2005;174(11):6639–47.PubMedCrossRefGoogle Scholar
  39. 39.
    Guay HM, et al. MyD88 is required for the formation of long-term humoral immunity to virus infection. J Immunol. 2007;178(8):5124–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Capolunghi F, et al. CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J Immunol. 2008;180(2):800–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Ueda Y, et al. T-independent activation-induced cytidine deaminase expression, class-switch recombination, and antibody production by immature/transitional 1 B cells. J Immunol. 2007;178(6):3593–601.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Huggins J, et al. CpG DNA activation and plasma-cell differentiation of CD27- naive human B cells. Blood. 2007;109(4):1611–9.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science. 2002;298(5601):2199–202.PubMedCrossRefGoogle Scholar
  44. 44.
    Xu W, et al. Viral double-stranded RNA triggers Ig class switching by activating upper respiratory mucosa B cells through an innate TLR3 pathway involving BAFF. J Immunol. 2008;181(1):276–87.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Wang Z, et al. Unmethylated CpG motifs protect murine B lymphocytes against Fas-mediated apoptosis. Cell Immunol. 1997;180(2):162–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Adjobimey T, et al. Co-activation through TLR4 and TLR9 but not TLR2 skews Treg-mediated modulation of Igs and induces IL-17 secretion in Treg: B cell co-cultures. Innate Immun. 2014;20(1):12–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Meyer-Bahlburg A, Khim S, Rawlings DJ. B cell intrinsic TLR signals amplify but are not required for humoral immunity. J Exp Med. 2007;204(13):3095–101.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Buchta CM, Bishop GA. TRAF5 negatively regulates TLR signaling in B lymphocytes. J Immunol. 2014;192(1):145–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Agrawal S, Gupta S. TLR1/2, TLR7, and TLR9 signals directly activate human peripheral blood naive and memory B cell subsets to produce cytokines, chemokines, and hematopoietic growth factors. J Clin Immunol. 2011;31(1):89–98.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Sindhava V, et al. Interleukin-10 mediated autoregulation of murine B-1 B-cells and its role in Borrelia hermsii infection. PLoS ONE. 2010;5(7):e11445.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lenert P, et al. TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J Clin Immunol. 2005;25(1):29–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Barr TA, et al. TLR-mediated stimulation of APC: distinct cytokine responses of B cells and dendritic cells. Eur J Immunol. 2007;37(11):3040–53.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Barr TA, et al. TLR and B cell receptor signals to B cells differentially program primary and memory Th1 responses to Salmonella enterica. J Immunol. 2010;185(5):2783–9.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Molnarfi N, et al. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med. 2013;210(13):2921–37.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Takemura S, et al. T cell activation in rheumatoid synovium is B cell dependent. J Immunol. 2001;167(8):4710–8.PubMedCrossRefGoogle Scholar
  56. 56.
    O’Neill SK, et al. Antigen-specific B cells are required as APCs and autoantibody-producing cells for induction of severe autoimmune arthritis. J Immunol. 2005;174(6):3781–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Serreze DV, et al. B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol. 1998;161(8):3912–8.PubMedGoogle Scholar
  58. 58.
    Gantner F, et al. CD40-dependent and -independent activation of human tonsil B cells by CpG oligodeoxynucleotides. Eur J Immunol. 2003;33(6):1576–85.PubMedCrossRefGoogle Scholar
  59. 59.
    Poeck H, et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood. 2004;103(8):3058–64.PubMedCrossRefGoogle Scholar
  60. 60.
    Barrio L, Saez de Guinoa J, Carrasco YR. TLR4 signaling shapes B cell dynamics via MyD88-dependent pathways and Rac GTPases. J Immunol. 2013;191(7):3867–75.PubMedCrossRefGoogle Scholar
  61. 61.
    Ha SA, et al. Regulation of B1 cell migration by signals through Toll-like receptors. J Exp Med. 2006;203(11):2541–50.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Vanden Bush TJ, et al. Cutting edge: importance of IL-6 and cooperation between innate and adaptive immune receptors in cellular vaccination with B lymphocytes. J Immunol. 2009;183(8):4833–7.CrossRefGoogle Scholar
  63. 63.
    He B, Qiao X, Cerutti A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol. 2004;173(7):4479–91.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu BS, et al. IL-21 enhances the activity of the TLR-MyD88-STAT3 pathway but not the classical TLR-MyD88-NF-kappaB pathway in human B cells to boost antibody production. J Immunol. 2013;191(8):4086–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Bessa J, Kopf M, Bachmann MF. Cutting edge: IL-21 and TLR signaling regulate germinal center responses in a B cell-intrinsic manner. J Immunol. 2010;184(9):4615–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Lin L, Gerth AJ, Peng SL. CpG DNA redirects class-switching towards “Th1-like” Ig isotype production via TLR9 and MyD88. Eur J Immunol. 2004;34(5):1483–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Kusunoki T, et al. CpG inhibits IgE class switch recombination through suppression of NF kappa B activity, but not through Id2 or Bcl6. Biochem Biophys Res Commun. 2005;328(2):499–506.PubMedCrossRefGoogle Scholar
  68. 68.
    Liu N, et al. CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat Immunol. 2003;4(7):687–93.PubMedCrossRefGoogle Scholar
  69. 69.
    Gerth AJ, Lin L, Peng SL. T-bet regulates T-independent IgG2a class switching. Int Immunol. 2003;15(8):937–44.PubMedCrossRefGoogle Scholar
  70. 70.
    He B, et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity. 2007;26(6):812–26.PubMedCrossRefGoogle Scholar
  71. 71.
    Barr TA, et al. B cell intrinsic MyD88 signals drive IFN-gamma production from T cells and control switching to IgG2c. J Immunol. 2009;183(2):1005–12.PubMedCrossRefGoogle Scholar
  72. 72.
    Nemazee D, et al. Immunology: Toll-like receptors and antibody responses. Nature, 2006; 441(7091): p. E4; discussion E4.Google Scholar
  73. 73.
    Hou B, et al. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity. 2011;34(3):375–84.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Browne EP. Toll-like receptor 7 controls the anti-retroviral germinal center response. PLoS Pathog. 2011;7(10):e1002293.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Figgett WA, et al. The TACI receptor regulates T-cell-independent marginal zone B cell responses through innate activation-induced cell death. Immunity. 2013;39(3):573–83.PubMedCrossRefGoogle Scholar
  76. 76.
    Bishop GA, et al. The immune response modifier resiquimod mimics CD40-induced B cell activation. Cell Immunol. 2001;208(1):9–17.PubMedCrossRefGoogle Scholar
  77. 77.
    Benson RJ, Innate and adaptive immune receptors protect B lymphocytes from CD95-induced apoptosis. In Graduate Program in Immunology. 2007, The University of Iowa.Google Scholar
  78. 78.
    Gargano LM, Moser JM, Speck SH. Role for MyD88 signaling in murine gammaherpesvirus 68 latency. J Virol. 2008;82(8):3853–63.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Bhoj VG, et al. MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proc Natl Acad Sci USA. 2008;105(37):14046–51.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Delgado MF, et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med. 2009;15(1):34–41.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Clingan JM, Matloubian M. B Cell-intrinsic TLR7 signaling is required for optimal B cell responses during chronic viral infection. J Immunol. 2013;191(2):810–8.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Koyama S, et al. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol. 2007;179(7):4711–20.PubMedCrossRefGoogle Scholar
  83. 83.
    Xie P, et al. Enhanced Toll-like receptor (TLR) responses of TNFR-associated factor 3 (TRAF3)-deficient B lymphocytes. J Leukoc Biol. 2011;90(6):1149–57.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Ori D, et al. Essential roles of K63-linked polyubiquitin-binding proteins TAB 2 and TAB 3 in B cell activation via MAPKs. J Immunol. 2013;190(8):4037–45.PubMedCrossRefGoogle Scholar
  85. 85.
    Sato S, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol. 2005;6(11):1087–95.PubMedCrossRefGoogle Scholar
  86. 86.
    Jabara HH, et al. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol. 2012;13(6):612–20.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Ziegler S, et al. Ca-related signaling events influence TLR9-induced IL-10 secretion in human B cells. Eur J Immunol. 2014;44(5):1285–98.Google Scholar
  88. 88.
    Vanden Bush TJ, Bishop GA. TLR7 and CD40 cooperate in IL-6 production via enhanced JNK and AP-1 activation. Eur J Immunol. 2008;38(2):400–9.CrossRefGoogle Scholar
  89. 89.
    Lapteva N, et al. Enhanced activation of human dendritic cells by inducible CD40 and Toll-like receptor-4 ligation. Cancer Res. 2007;67(21):10528–37.PubMedCrossRefGoogle Scholar
  90. 90.
    Jain S, Chodisetti SB, Agrewala JN. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells. PLoS ONE. 2011;6(6):e20651.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Boeglin E, et al. Toll-like receptor agonists synergize with CD40L to induce either proliferation or plasma cell differentiation of mouse B cells. PLoS ONE. 2011;6(10):e25542.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Heer AK, et al. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J Immunol. 2007;178(4):2182–91.PubMedCrossRefGoogle Scholar
  93. 93.
    Krieg AM, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995;374(6522):546–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Pone EJ, et al. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-kappaB pathway. Nat Commun. 2012;3:767.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Minguet S, et al. Enhanced B-cell activation mediated by TLR4 and BCR crosstalk. Eur J Immunol. 2008;38(9):2475–87.PubMedCrossRefGoogle Scholar
  96. 96.
    Chaturvedi A, Dorward D, Pierce SK. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity. 2008;28(6):799–809.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Eckl-Dorna J, Batista FD. BCR-mediated uptake of antigen linked to TLR9 ligand stimulates B-cell proliferation and antigen-specific plasma cell formation. Blood. 2009;113(17):3969–77.PubMedCrossRefGoogle Scholar
  98. 98.
    Poovassery JS, Vanden Bush TJ, Bishop GA. Antigen receptor signals rescue B cells from TLR tolerance. J Immunol. 2009;183(5):2974–83.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Poovassery JS, Bishop GA. Type I IFN receptor and the B cell antigen receptor regulate TLR7 responses via distinct molecular mechanisms. J Immunol. 2012;189(4):1757–64.PubMedCrossRefGoogle Scholar
  100. 100.
    Picard C, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science. 2003;299(5615):2076–9.PubMedCrossRefGoogle Scholar
  101. 101.
    von Bernuth H, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008;321(5889):691–6.CrossRefGoogle Scholar
  102. 102.
    Ku CL, et al. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J Med Genet. 2007;44(1):16–23.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Weller S, et al. IgM+ IgD+ CD27+ B cells are markedly reduced in IRAK-4-, MyD88-, and TIRAP- but not UNC-93B-deficient patients. Blood. 2012;120(25):4992–5001.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    van Zelm MC. Human CD27+ IgM+ IgD+ B cells: T-cell or TLR-dependent? Blood. 2012;120(25):4905–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Day N, et al. Interleukin receptor-associated kinase (IRAK-4) deficiency associated with bacterial infections and failure to sustain antibody responses. J Pediatr. 2004;144(4):524–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Ngo VN, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Puente XS, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101–5.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Treon SP, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.PubMedCrossRefGoogle Scholar
  109. 109.
    Xu L, et al. MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood. 2013;121(11):2051–8.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Wang L, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365(26):2497–506.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Knezevic J, et al. Heterozygous carriage of a dysfunctional Toll-like receptor 9 allele affects CpG oligonucleotide responses in B cells. J Biol Chem. 2012;287(29):24544–53.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Lau CM, et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med. 2005;202(9):1171–7.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Viglianti GA, et al. Activation of autoreactive B cells by CpG dsDNA. Immunity. 2003;19(6):837–47.PubMedCrossRefGoogle Scholar
  114. 114.
    Leadbetter EA, et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002;416(6881):603–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Ehlers M, et al. TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J Exp Med. 2006;203(3):553–61.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Nakano S, et al. Role of pathogenic auto-antibody production by Toll-like receptor 9 of B cells in active systemic lupus erythematosus. Rheumatology (Oxford). 2008;47(2):145–9.CrossRefGoogle Scholar
  117. 117.
    Wong CK, et al. Activation profile of Toll-like receptors of peripheral blood lymphocytes in patients with systemic lupus erythematosus. Clin Exp Immunol. 2010;159(1):11–22.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Wu O, et al. The expressions of Toll-like receptor 9 and T-bet in circulating B and T cells in newly diagnosed, untreated systemic lupus erythematosus and correlations with disease activity and laboratory data in a Chinese population. Immunobiology. 2009;214(5):392–402.PubMedCrossRefGoogle Scholar
  119. 119.
    Christensen SR, et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity. 2006;25(3):417–28.PubMedCrossRefGoogle Scholar
  120. 120.
    Kawasaki A, et al. TLR7 single-nucleotide polymorphisms in the 3′ untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study. Arthritis Res Ther. 2011;13(2):R41.PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Shen N, et al. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci USA. 2010;107(36):15838–43.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Hwang SH, et al. B cell TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in systemic lupus erythematosus-prone mice. J Immunol. 2012;189(12):5786–96.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Hua Z, et al. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. J Immunol. 2014;192(3):875–85.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Guerrier T, et al. Role of Toll-like receptors in primary Sjogren’s syndrome with a special emphasis on B-cell maturation within exocrine tissues. J Autoimmun. 2012;39(1–2):69–76.PubMedCrossRefGoogle Scholar
  125. 125.
    Zanoni G, et al. In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med. 2006;3(9):e358.PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Brentano F, Kyburz D, Gay S. Toll-like receptors and rheumatoid arthritis. Methods Mol Biol. 2009;517:329–43.PubMedCrossRefGoogle Scholar
  127. 127.
    Wang YZ, et al. Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis. Inflammation. 2013;36(1):121–30.PubMedCrossRefGoogle Scholar
  128. 128.
    Zipris D. Toll-like receptors and type 1 diabetes. Adv Exp Med Biol. 2010;654:585–610.PubMedCrossRefGoogle Scholar
  129. 129.
    Rahman AH, Eisenberg RA. The role of toll-like receptors in systemic lupus erythematosus. Springer Semin Immunopathol. 2006;28(2):131–43.PubMedCrossRefGoogle Scholar
  130. 130.
    Koarada S, et al. B cells lacking RP105, a novel B cell antigen, in systemic lupus erythematosus. Arthritis Rheum. 1999;42(12):2593–600.PubMedCrossRefGoogle Scholar
  131. 131.
    Kikuchi Y, et al. RP105-lacking B cells from lupus patients are responsible for the production of immunoglobulins and autoantibodies. Arthritis Rheum. 2002;46(12):3259–65.PubMedCrossRefGoogle Scholar
  132. 132.
    Isnardi I, et al. IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity. 2008;29(5):746–57.PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Kono DH, et al. Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus. Proc Natl Acad Sci USA. 2009;106(29):12061–6.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Jego G, et al. Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia. 2006;20(6):1130–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Bohnhorst J, et al. Toll-like receptors mediate proliferation and survival of multiple myeloma cells. Leukemia. 2006;20(6):1138–44.PubMedCrossRefGoogle Scholar
  136. 136.
    Kawano M, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 1988;332(6159):83–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Liu J, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 2007;110(1):296–304.PubMedCrossRefGoogle Scholar
  138. 138.
    Jahrsdorfer B, et al. B-cell lymphomas differ in their responsiveness to CpG oligodeoxynucleotides. Clin Cancer Res. 2005;11(4):1490–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Spaner DE, et al. Immunomodulatory effects of Toll-like receptor-7 activation on chronic lymphocytic leukemia cells. Leukemia. 2006;20(2):286–95.PubMedCrossRefGoogle Scholar
  140. 140.
    Decker T, et al. Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood. 2000;95(3):999–1006.PubMedGoogle Scholar
  141. 141.
    Apetoh L, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Tian J, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8(5):487–96.PubMedCrossRefGoogle Scholar
  143. 143.
    Shi Y, et al. Toll-like receptor-7 tolerizes malignant B cells and enhances killing by cytotoxic agents. Cancer Res. 2007;67(4):1823–31.PubMedCrossRefGoogle Scholar
  144. 144.
    Longo PG, et al. The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia. 2007;21(1):110–20.PubMedCrossRefGoogle Scholar
  145. 145.
    Vasilakos JP, et al. Adjuvant activities of immune response modifier R-848: comparison with CpG ODN. Cell Immunol. 2000;204(1):64–74.PubMedCrossRefGoogle Scholar
  146. 146.
    Weeratna RD, et al. TLR agonists as vaccine adjuvants: comparison of CpG ODN and Resiquimod (R-848). Vaccine. 2005;23(45):5263–70.PubMedCrossRefGoogle Scholar
  147. 147.
    Vidal D. Topical imiquimod: mechanism of action and clinical applications. Mini Rev Med Chem. 2006;6(5):499–503.PubMedCrossRefGoogle Scholar
  148. 148.
    Haxhinasto SA, Bishop GA. Synergistic B cell activation by CD40 and the B cell antigen receptor: role of B lymphocyte antigen receptor-mediated kinase activation and tumor necrosis factor receptor-associated factor regulation. J Biol Chem. 2004;279(4):2575–82.PubMedCrossRefGoogle Scholar
  149. 149.
    Schiffman M, Wacholder S. Success of HPV vaccination is now a matter of coverage. Lancet Oncol. 2012;13(1):10–2.PubMedCrossRefGoogle Scholar
  150. 150.
    Kundi M. New hepatitis B vaccine formulated with an improved adjuvant system. Expert Rev Vaccines. 2007;6(2):133–40.PubMedCrossRefGoogle Scholar
  151. 151.
    Sogaard OS, et al. Improving the immunogenicity of pneumococcal conjugate vaccine in HIV-infected adults with a toll-like receptor 9 agonist adjuvant: a randomized, controlled trial. Clin Infect Dis. 2010;51(1):42–50.PubMedCrossRefGoogle Scholar
  152. 152.
    Halperin SA, et al. Comparison of the safety and immunogenicity of hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide and a licensed hepatitis B vaccine in healthy young adults. Vaccine. 2006;24(1):20–6.PubMedCrossRefGoogle Scholar
  153. 153.
    Constant SL. B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo. J Immunol. 1999;162(10):5695–703.PubMedGoogle Scholar
  154. 154.
    Lapointe R, et al. CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res. 2003;63(11):2836–43.PubMedGoogle Scholar
  155. 155.
    Schultze JL, et al. CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest. 1997;100(11):2757–65.PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Schultze JL, Grabbe S, von Bergwelt-Baildon MS. DCs and CD40-activated B cells: current and future avenues to cellular cancer immunotherapy. Trends Immunol. 2004;25(12):659–64.PubMedCrossRefGoogle Scholar
  157. 157.
    Baccam M, et al. CD40-mediated transcriptional regulation of the IL-6 gene in B lymphocytes: involvement of NF-kappa B, AP-1, and C/EBP. J Immunol. 2003;170(6):3099–108.PubMedCrossRefGoogle Scholar
  158. 158.
    Bishop GA, et al. Molecular mechanisms of B lymphocyte activation by the immune response modifier R-848. J Immunol. 2000;165(10):5552–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Freeman GJ, et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science. 1993;262(5135):909–11.PubMedCrossRefGoogle Scholar
  160. 160.
    Boussiotis VA, et al. B7 but not intercellular adhesion molecule-1 costimulation prevents the induction of human alloantigen-specific tolerance. J Exp Med. 1993;178(5):1753–63.PubMedCrossRefGoogle Scholar
  161. 161.
    Freeman GJ, et al. Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J Exp Med. 1991;174(3):625–31.PubMedCrossRefGoogle Scholar
  162. 162.
    Batista FD, Harwood NE. The who, how and where of antigen presentation to B cells. Nat Rev Immunol. 2009;9(1):15–27.PubMedCrossRefGoogle Scholar
  163. 163.
    Rodriguez-Pinto D, Moreno J. B cells can prime naive CD4+ T cells in vivo in the absence of other professional antigen-presenting cells in a CD154-CD40-dependent manner. Eur J Immunol. 2005;35(4):1097–105.PubMedCrossRefGoogle Scholar
  164. 164.
    Harada M, et al. The antitumor activity induced by the in vivo administration of activated B cells bound to anti-CD3 monoclonal antibody. Cell Immunol. 1995;161(1):132–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Liebig TM, et al. Generation of human CD40-activated B cells. J Vis Exp. 2009. doi: 10.3791/1373.
  166. 166.
    Liebig TM, et al. Murine model of CD40-activation of B cells. J Vis Exp. 2010. doi: 10.3791/1734.
  167. 167.
    Ahonen CL, et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med. 2004;199(6):775–84.PubMedCentralPubMedCrossRefGoogle Scholar
  168. 168.
    Li Q, et al. Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin Cancer Res. 2011;17(15):4987–95.PubMedCentralPubMedCrossRefGoogle Scholar
  169. 169.
    Li Q, et al. In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy. J Immunol. 2009;183(5):3195–203.PubMedCentralPubMedCrossRefGoogle Scholar
  170. 170.
    Guo S, et al. Induction of protective cytotoxic T-cell responses by a B-cell-based cellular vaccine requires stable expression of antigen. Gene Ther. 2009;16(11):1300–13.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Graduate Program in ImmunologyUniversity of IowaIowa CityUSA
  2. 2.Department of MicrobiologyUniversity of IowaIowa CityUSA
  3. 3.Department of Internal MedicineUniversity of IowaIowa CityUSA
  4. 4.Iowa City Veterans Affairs Medical CenterIowa CityUSA

Personalised recommendations