Advertisement

Immunologic Research

, Volume 58, Issue 2–3, pp 374–377 | Cite as

Depletion of inflammatory dendritic cells with anti-CD209 conjugated to saporin toxin

  • Michael N. Alonso
  • Josh G. Gregorio
  • Matthew G. Davidson
  • Joseph C. Gonzalez
  • Edgar G. EnglemanEmail author
IMMUNOLOGY AT STANFORD UNIVERSITY

Abstract

Monocytes rapidly infiltrate inflamed tissues and differentiate into CD209+ inflammatory dendritic cells (DCs) that promote robust immunity or, if unregulated, inflammatory disease. Previous studies in experimental animal models indicate that inflammatory DC depletion through systemic elimination of their monocyte precursors with clodronate-loaded liposomes ameliorates the development of psoriasis and other diseases. However, translation of systemic monocyte depletion strategies is difficult due to the importance of monocytes during homeostasis and infection clearance. Here, we describe a strategy that avoids the monocyte intermediates to deplete inflammatory DCs through antibody-loaded toxin. Mice with an abundance of inflammatory DCs as a consequence of lipopolysaccharide exposure were treated with anti-CD209 antibody conjugated to saporin, a potent ribosome inactivator. The results demonstrate depletion of CD209+ DCs. This strategy could prove useful for the targeted reduction of inflammatory DCs in disease.

Keywords

Monocytes Inflammatory dendritic cells CD209 Antibody-conjugated toxin Saporin 

Notes

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–92. doi: 10.1146/annurev.immunol.021908.132557.CrossRefPubMedGoogle Scholar
  2. 2.
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69. doi: 10.1038/nri2448.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64. doi: 10.1038/nri1733.CrossRefPubMedGoogle Scholar
  4. 4.
    Weber C, Belge KU, von Hundelshausen P, Draude G, Steppich B, Mack M, et al. Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol. 2000;67(5):699–704.PubMedGoogle Scholar
  5. 5.
    Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006;7(3):311–7. doi: 10.1038/ni1309.CrossRefPubMedGoogle Scholar
  6. 6.
    Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–52. doi: 10.1146/annurev.immunol.26.021607.090326.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Juarez E, Nunez C, Sada E, Ellner JJ, Schwander SK, Torres M. Differential expression of Toll-like receptors on human alveolar macrophages and autologous peripheral monocytes. Respir Res. 2010;11:2. doi: 10.1186/1465-9921-11-2.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Muzio M, Mantovani A. Toll-like receptors (TLRs) signalling and expression pattern. J Endotoxin Res. 2001;7(4):297–300.CrossRefPubMedGoogle Scholar
  9. 9.
    Leon B, Lopez-Bravo M, Ardavin C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity. 2007;26(4):519–31. doi: 10.1016/j.immuni.2007.01.017.CrossRefPubMedGoogle Scholar
  10. 10.
    Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science. 2008;319(5860):198–202. doi: 10.1126/science.1151869.CrossRefPubMedGoogle Scholar
  11. 11.
    Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E, Longhi MP, et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell. 2010;143(3):416–29. doi: 10.1016/j.cell.2010.09.039.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y, Luche H, et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity. 2009;31(3):502–12. doi: 10.1016/j.immuni.2009.06.025.CrossRefPubMedGoogle Scholar
  13. 13.
    Traynor TR, Kuziel WA, Toews GB, Huffnagle GB. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol. 2000;164(4):2021–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Jia T, Serbina NV, Brandl K, Zhong MX, Leiner IM, Charo IF, et al. Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J Immunol. 2008;180(10):6846–53.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Dunay IR, Fuchs A, Sibley LD. Inflammatory monocytes but not neutrophils are necessary to control infection with Toxoplasma gondii in mice. Infect Immun. 2010;78(4):1564–70. doi: 10.1128/IAI.00472-09.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Osterholzer JJ, Curtis JL, Polak T, Ames T, Chen GH, McDonald R, et al. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J Immunol. 2008;181(1):610–20.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    te Velde AA, van Kooyk Y, Braat H, Hommes DW, Dellemijn TA, Slors JF, et al. Increased expression of DC-SIGN + IL-12 + IL-18 + and CD83 + IL-12-IL-18- dendritic cell populations in the colonic mucosa of patients with Crohn’s disease. Eur J Immunol. 2003;33(1):143–51. doi: 10.1002/immu.200390017.CrossRefGoogle Scholar
  18. 18.
    Baumgart DC, Metzke D, Schmitz J, Scheffold A, Sturm A, Wiedenmann B, et al. Patients with active inflammatory bowel disease lack immature peripheral blood plasmacytoid and myeloid dendritic cells. Gut. 2005;54(2):228–36. doi: 10.1136/gut.2004.040360.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Ward NL, Loyd CM, Wolfram JA, Diaconu D, Michaels CM, McCormick TS. Depletion of antigen-presenting cells by clodronate liposomes reverses the psoriatic skin phenotype in KC-Tie2 mice. Br J Dermatol. 2011;164(4):750–8. doi: 10.1111/j.1365-2133.2010.10129.x.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Alonso MN, Wong MT, Zhang AL, Winer D, Suhoski MM, Tolentino LL, et al. T(H)1, T(H)2, and T(H)17 cells instruct monocytes to differentiate into specialized dendritic cell subsets. Blood. 2011;118(12):3311–20. doi: 10.1182/blood-2011-03-341065.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Davidson MG, Alonso MN, Yuan R, Axtell RC, Kenkel JA, Suhoski MM, et al. Th17 cells induce Th1-polarizing monocyte-derived dendritic cells. J Immunol. 2013;191(3):1175–87. doi: 10.4049/jimmunol.1203201.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Rafei M, Berchiche YA, Birman E, Boivin MN, Young YK, Wu JH, et al. An engineered GM-CSF-CCL2 fusokine is a potent inhibitor of CCR2-driven inflammation as demonstrated in a murine model of inflammatory arthritis. J Immunol. 2009;183(3):1759–66. doi: 10.4049/jimmunol.0900523.CrossRefPubMedGoogle Scholar
  23. 23.
    Gong JH, Ratkay LG, Waterfield JD, Clark-Lewis I. An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J Exp Med. 1997;186(1):131–7.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Andres PG, Beck PL, Mizoguchi E, Mizoguchi A, Bhan AK, Dawson T, et al. Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1 + lymphocyte-associated Th2-type immune response in the intestine. J Immunol. 2000;164(12):6303–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Oelzner P, Kunze A, Henzgen S, Thoss K, Hein G, Stein G, et al. High-dose clodronate therapy prevents joint destruction in chronic antigen-induced arthritis of the rat but inhibits bone formation at the axial skeleton. Inflamm Res. 2000;49(8):424–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Tacke F, Ginhoux F, Jakubzick C, van Rooijen N, Merad M, Randolph GJ. Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J Exp Med. 2006;203(3):583–97. doi: 10.1084/jem.20052119.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Haringman JJ, Gerlag DM, Smeets TJ, Baeten D, van den Bosch F, Bresnihan B, et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54(8):2387–92. doi: 10.1002/art.21975.CrossRefPubMedGoogle Scholar
  28. 28.
    Vergunst CE, Gerlag DM, Lopatinskaya L, Klareskog L, Smith MD, van den Bosch F, et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 2008;58(7):1931–9. doi: 10.1002/art.23591.CrossRefPubMedGoogle Scholar
  29. 29.
    Davidson MG, Alonso MN, Kenkel JA, Suhoski MM, Gonzalez JC, Yuan R, et al. In vivo T cell activation induces the formation of CD209(+) PDL-2(+) dendritic cells. PLoS ONE. 2013;8(10):e76258. doi: 10.1371/journal.pone.0076258.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Weng A, Bachran C, Fuchs H, Krause E, Stephanowitz H, Melzig MF. Enhancement of saporin cytotoxicity by Gypsophila saponins–more than stimulation of endocytosis. Chem Biol Interact. 2009;181(3):424–9. doi: 10.1016/j.cbi.2009.07.007.CrossRefPubMedGoogle Scholar
  31. 31.
    Bachran C, Sutherland M, Heisler I, Hebestreit P, Melzig MF, Fuchs H. The saponin-mediated enhanced uptake of targeted saporin-based drugs is strongly dependent on the saponin structure. Exp Biol Med. 2006;231(4):412–20.Google Scholar
  32. 32.
    Zhang P, Schwartz O, Pantelic M, Li G, Knazze Q, Nobile C, et al. DC-SIGN (CD209) recognition of Neisseria gonorrhoeae is circumvented by lipooligosaccharide variation. J Leukoc Biol. 2006;79(4):731–8. doi: 10.1189/jlb.0405184.CrossRefPubMedGoogle Scholar
  33. 33.
    O’Keeffe M, Hochrein H, Vremec D, Caminschi I, Miller JL, Anders EM, et al. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med. 2002;196(10):1307–19.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michael N. Alonso
    • 1
  • Josh G. Gregorio
    • 1
  • Matthew G. Davidson
    • 1
  • Joseph C. Gonzalez
    • 1
  • Edgar G. Engleman
    • 1
    Email author
  1. 1.Department of PathologyStanford University School of MedicineStanfordUSA

Personalised recommendations