Immunologic Research

, Volume 58, Issue 2–3, pp 307–314

Development of therapies for autoimmune disease at Stanford: a tale of multiple shots and one goal



The title of this contribution on Immunology at Stanford is purposely ambiguous. One goal is the development of safe and effective therapy for autoimmune diseases. Another definition of goal is to score, and this would ultimately mean the development of an approved drug. Indeed, the efforts in my four decades at Stanford, have included the discovery and subsequent development of a monoclonal antibody to block homing to the inflamed brain, leading to natalizumab, an approved therapeutic for two autoimmune diseases: relapsing–remitting MS and for inflammatory bowel disease. Multiple attempts to develop new therapies for autoimmune disease are described here: The trimolecular complex and the immune synapse serve as one major set of targets, with attempts to inhibit particular major histocompatibility molecules, the variable regions of the T cell receptor, and CD4. Other approaches focusing on antigen-specific tolerance include ongoing attempts with tolerizing DNA vaccines in type 1 diabetes. Finally, the repurposing of popular drugs approved for other indications, including statins and inhibitors of angiotensin converting enzyme is under development and showing promise in the clinic, particularly for secondary progressive multiple sclerosis. The milieu within Stanford Immunology has helped to nurture these efforts to translate discoveries in immunology and to take them from bench to bedside.


Immunotherapy Therapeutic antibody Altered peptide ligand Natalizumab Statins Angiotensin converting enzyme 


  1. 1.
    McDevitt HO, Sela M. Genetic control of the antibody response. I. Demonstration of determinant-specific differences in response to synthetic polypeptide antigens in two strains of inbred mice. J Exp Med. 1965;122(3):517–31.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    McDevitt HO, Tyan ML. Genetic control of the antibody response in inbred mice. Transfer of response by spleen cells and linkage to the major histocompatibility (H-2) locus. J Exp Med. 1968;128(1):1–11.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Hedrick SM, Cohen DI, Nielsen EA, Davis MM. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature. 1984;308(5955):149–53.CrossRefPubMedGoogle Scholar
  4. 4.
    Gallatin WM, Weissman IL, Butcher EC. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature. 1983;304(5921):30–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Miller RA, Maloney DG, Warnke R, Levy R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med. 1982;306(9):517–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Lifson JD, Reyes GR, McGrath MS, Stein BS, Engleman EG. AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science. 1986;232(4754):1123–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Kimoto M, Fathman CG. Antigen-reactive T cell clones. I. Transcomplementing hybrid I-A-region gene products function effectively in antigen presentation. J Exp Med. 1980;152(4):759–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Zamvil S, Nelson P, Trotter J, Mitchell D, Knobler R, Fritz R, Steinman L. T cell clones specific for myelin basic protein induce chronic relapsing EAE and demyelination. Nature. 1985;317:355–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard J. T cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature. 1986;324:258–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Ben-Nun A, Wekerle H, Cohen IR. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature. 1981;292(5818):60–1.CrossRefPubMedGoogle Scholar
  11. 11.
    Steinman L, Rosenbaum JT, Sriram S, McDevitt HO. In vivo effects of antibodies to immune response gene products: prevention of experimental allergic encephalitis. Proc Natl Acad Sci USA. 1981;78:7111–4.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Waldor M, Sriram S, McDevitt HO, Steinman L. In vivo therapy with monoclonal anti I-A antibody suppresses immune response to acetylcholine receptor. Proc Natl Acad Sci USA. 1983;80:2713–7.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Waldor MK, Hardy RR, Hayakawa K, Steinman L, Herzenberg LA, Herzenberg LA. Disappearance and reappearance of B cells following in vivo treatment with monoclonal anti I-A antibodies. Proc Natl Acad Sci USA. 1984;81:2855–8.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Waldor M, Mitchell D, Kipps J, Herzenberg LA, Steinman L. Importance of immunoglobulin isotype in therapy of EAE with monoclonal anti-CD4 antibody. J Immunol. 1987;139:3660–4.PubMedGoogle Scholar
  15. 15.
    Alters SE, Steinman L, Oi VT. Comparison of rat and rat-mouse chimeric anti-murine CD4 antibodies in vitro: chimeric antibodies lyse low density CD4 + cells. J Immunol. 1989;142:2018–23.PubMedGoogle Scholar
  16. 16.
    Jonkers M, van Lambalgen R, Mitchell D, Durham SK, Steinman L. Successful treatment of EAE in rhesus monkeys with MHC class II specific monoclonal antibodies. J Autoimmun. 1988;1:399–414.CrossRefGoogle Scholar
  17. 17.
    Acha-Orbea H, Mitchell DJ, Timmerman L, Wraith DC, Waldor MK, Tausch GS, Zamvil SS, McDevitt HO, Steinman L. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell. 1988;54:263–73.CrossRefPubMedGoogle Scholar
  18. 18.
    Oksenberg JR, Stuart S, Begovich AB, Bell R, Erlich H, Steinman L, Bernard CCA. Limited heterogeneity of rearranged T cell receptor transcripts in brains of multiple sclerosis patients. Nature. 1990;345:344–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Oksenberg JR, Panzara MA, Begovich AB, Mitchell D, Erlich HA, Murray RS, Shimonkevitz R, Sherritt M, Rothbard J, Bernard CCA, Steinman L. Selection for T cell receptor Vb-Db-Jb gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature. 1993;362:68–70.CrossRefPubMedGoogle Scholar
  20. 20.
  21. 21.
    Killestein J, Olsson T, Wallström E, Svenningsson A, Khademi M, Blumhardt LD, Fagius J, Hillert J, Landtblom AM, Edenius C, Arfors L, Barkhof F, Polman CH. Antibody-mediated suppression of Vbeta5.2/5.3(+) T cells in multiple sclerosis: results from an MRI-monitored phase II clinical trial. Ann Neurol. 2002;51(4):467–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Waldor MK, Hardy R, Herzenberg LA, Herzenberg LA, Lanier L, Sriram S, Lim M, Steinman L. Reversal of EAE with monoclonal antibody to a T cell subset marker (L3T4). Science. 1985;227:415–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Alters SE, Sakai K, Steinman L, Oi VT. Mechanisms of anti-CD4-mediated depletion and immunotherapy. A study using a set of chimeric anti-CD4 antibodies. J Immunol. 1990;144(12):4587–92.PubMedGoogle Scholar
  24. 24.
    Lindsey JW, Hodgkinson S, Mehta R, Siegel RC, Mitchell D, Lim M, Piercy BA, Dorfman L, Enzmann D, Steinman L. Phase I clinical trial of chimeric monoclonal anti-CD4 antibody in multiple sclerosis. Neurology. 1994;44:413–9.CrossRefPubMedGoogle Scholar
  25. 25.
    van Oosten BW, Lai M, Hodgkinson S, Barkhof F, Miller DH, Moseley IF, Thompson AJ, Rudge P, McDougall A, McLeod JG, Adèr HJ, Polman CH. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled MR-monitored phase II trial. Neurology. 1997;49(2):351–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Wraith DC, McDevitt HO, Steinman L, Acha-Orbea H. T cell recognition as the target for immune intervention in autoimmune disease. Cell. 1989;57:709–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Wraith DC, Smilek DE, Mitchell DJ, Steinman L, McDevitt HO. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide mediated immunotherapy. Cell. 1989;59:247–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Karin N, Mitchell D, Ling N, Brocke S, Steinman L. Reversal of experimental autoimmune encephalomyelitis by a soluble variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of Interferon-_ and TNF-a production. J Exp Med. 1994;180:2227–37.CrossRefPubMedGoogle Scholar
  29. 29.
    Kappos L, Comi G, Panitch H, Oger J, Antel J, Conlon P, Steinman L, the APL in Relapsing MS Study Group. Induction of a non-encephalitogenic Th2 autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo controlled, randomized phase II trial. Nat Med. 2000;6(10):1176–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Pedotti R, Mitchell D, Wedemeyer J, Karpuj M, Chabas D, Hattab E, Tsai M, Galli SJ, Steinman L. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat Immunol. 2001;2:216–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J, Antel J, Frank JA, McFarland HF, Martin R. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med. 2000;6(10):1167–75.CrossRefPubMedGoogle Scholar
  32. 32.
    Yednock T, Cannon C, Fritz L, Sanchez-Madrid F, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against a4b1 integrin. Nature. 1992;356:63–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Rudick R, Polman C, Clifford D, Miller D, Steinman L. Natalizumab: bench to bedside and beyond. JAMA Neurol. 2013;70:172–82.CrossRefPubMedGoogle Scholar
  34. 34.
    Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910.CrossRefPubMedGoogle Scholar
  35. 35.
    Steinman L. The discovery of natalizumab, a potent therapeutic for multiple sclerosis. J Cell Biol. 2012;199:413–6. doi:10.1083/jcb.201207175.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Steinman L. Immunology of relapse and remission in multiple Sclerosis. Annu Rev Immunol. 2014;32:257–81.Google Scholar
  37. 37.
    Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366:1870–80.CrossRefPubMedGoogle Scholar
  38. 38.
    Ho P, Fontoura P, Ruiz P, Steinman L, Garren H. An immunomodulatory GpG oligonucleotide for the treatment of autoimmunity via the innate and adaptive immune systems. J Immunol. 2003;171:4920–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Robinson WH, Fontoura P, Lee BJ, de Vegvar HEN, Tom J, Pedotti R, DiGennaro C, Mitchell DJ, Fong D, Ho PK, Ruiz P, Maverakis E, Stevens D, Bernard CCA, Olsson T, Martin R, Kuchroo VK, van Noort JM, Genain CP, Utz PJ, Garren H, Steinman L. Reverse genomics: protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat Biotechnol. 2003;21:1033–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Solvason N, Lou YP, Peters W, Evans E, Martinez J, Ramirez U, Ocampo A, Yun R, Ahmad S, Liu E, Yu L, Eisenbarth G, Leviten M, Steinman L, Garren H. Improved efficacy of a tolerizing DNA vaccine for reversal of hyperglycemia through enhancement of gene expression and localization to intracellular sites. J Immunol. 2008;181:8298–307.CrossRefPubMedGoogle Scholar
  41. 41.
    Garren H, Robinson W, Krasulová E, Havrdová E, Nadj C, Selmaj K, Losy J, Nadj I, Radue EW, Kidd BA, Gianettoni J, Tersini K, Utz PJ, Valone F, Steinman L, the BHT-3009 Study Group. Phase 2b trial of a DNA vaccine encoding myelin basic protein in relapsing multiple sclerosis. Ann Neurol. 2008;63(5):611–20.CrossRefPubMedGoogle Scholar
  42. 42.
    Steinman L. The road not taken: antigen-specific therapy and neuroinflammatory disease. JAMA Neurol. 2013;1:1–2. doi:10.1001/jamaneurol.2013.3553.Google Scholar
  43. 43.
    Verge CF, Stenger D, Bonifacio E, Colman PG, Pilcher C, Bingley PJ, Eisenbarth GS. Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: combinatorial islet autoantibody workshop. Diabetes. 1998;47:1857–66.CrossRefPubMedGoogle Scholar
  44. 44.
    Roep BO, Solvason N, Gottlieb PA, Abreu JRF, Harrison LC, Eisenbarth GS, Yu L, Leviten M, Hagopian WA, Buse JB, von Herrath M, Quan J, King R, Robinson WH, Utz PJ, Garren H, the BHT 3021 Investigators, Steinman L. Plasmid encoded proinsulin preserves C-peptide while specifically reducing proinsulin specific CD8 T cells in type 1 diabetes. Sci Transl Med. 2013;5(191):191ra82. doi:10.1126/scitranslmed.3006103.
  45. 45.
    Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274:94–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Youssef S, Stuve O, Patorroyo J, Ruiz P, Radosevich J, Hur EM, Bravo M, Mitchell D, Sobel RA, Steinman L, Zamvil S. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in CNS autoimmune disease. Nature. 2002;420:78–84.CrossRefPubMedGoogle Scholar
  47. 47.
    Dunn SE, Youssef S, Goldstein MJ, Prod’homme T, Weber MS, Zamvil SS, Steinman L. Isoprenoids determine Th1/Th2 fate in pathogenic T cells providing a mechanism for modulation of autoimmunity by atorvastatin. J Exp Med. 2006;203:401–12.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Chataway J Schuerer N, Alsanousi A, et al Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2014;6736(13):62242-4.
  49. 49.
    Waubant E, Pelletier D, Mass M, Cohen JA, Kita M, Cross A, Bar-Or A, Vollmer T, Racke M, Stüve O, Schwid S, Goodman A, Kachuck N, Preiningerova J, Weinstock-Guttman B, Calabresi PA, Miller A, Mokhtarani M, Iklé D, Murphy S, Kopetskie H, Ding L, Rosenberg E, Spencer C, Zamvil SS, ITN STAyCIS Study Group, ITN020AI Study Management Team. Randomized controlled trial of atorvastatin in clinically isolated syndrome: the STAyCIS study. Neurology. 2012;78(15):1171–8. doi:10.1212/WNL.0b013e31824f7fdd.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Platten M, Youssef S, Hur EM, Ho PP, Han MH, Lanz TV, Phillips LK, Goldstein MJ, Bhat R, Raine CS, Sobel RA, Steinman L. Blocking angiotensin converting enzyme induces potent regulatory T cells and modulates TH1 and TH17-mediated autoimmunity. Proc Natl Acad Sci USA. 2009;106:14948–53.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Lanz TV, Ding Z, Ho PP, Luo J, Agrawal AN, Srinagesh H, Axtell R, Zhang H, Platten M, Wyss-Coray T, Steinman L. Angiotensin II sustains brain inflammation in mice via TGF-beta. J Clin Investig. 2010;120(8):2782–94.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Chabas D, Baranzini S, Mitchell D, Bernard CCA, Rittling S, Denhardt D, Sobel R, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg J, Steinman L. The influence of the pro-inflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science. 2001;294:1731–5.CrossRefPubMedGoogle Scholar
  53. 53.
    Ousman SS, Tomooka BH, Van Noort JM, Wawrousek EF, O’Conner K, Hafler DA, Sobel RA, Robinson WH, Steinman L. Protective and therapeutic role for aB-crystallin in autoimmune demyelination. Nature. 2007;448:474–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Kurnellas MP, Adams CM, Sobel RA, Steinman L, Rothbard JR. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation. Sci Transl Med. 2013;5(179):179ra42.Google Scholar
  55. 55.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departments of Pediatrics, Neurology and Neurological SciencesStanford UniversityStanfordUSA

Personalised recommendations