Immunologic Research

, Volume 58, Issue 2–3, pp 369–373 | Cite as

Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma

  • E. C. KlingbeilEmail author
  • K. M. Hew
  • U. C. Nygaard
  • K. C. Nadeau


Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma.


Asthma Polycyclic aromatic hydrocarbons Diesel exhaust particles Environmental tobacco smoke Epigenetic remodeling 


  1. 1.
    Ho S. Enivronmental epigenetics of asthma: an update. J Allergy Clin Immunol. 2010;126(3):453–65.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Carlsten C, Melen E. Air pollution, genetics and allergy: an update. Curr Opin Allergy Clin Immunol. 2012;12(5):455–60.Google Scholar
  3. 3.
    Gowers AM, et al. Does outdoor air pollution induce new cases of asthma? Biological plausibility and evidence; a review. Respirology. 2012;17(6):887–98.CrossRefPubMedGoogle Scholar
  4. 4.
    Patel MM, et al. Traffic density and stationary sources of air pollution associated with wheeze, asthma, and immunoglobulin E from birth to age 5 years among New York City children. Environ Res. 2011;111:1222–9.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Liu F, et al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene. 2010;29:3650–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Tsay JJ, et al. Aryl hydrocarbon receptor and lung cancer. Anticancer Res. 2013;33(4):1247–56.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Shimada T, et al. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P4501A1 and 1B1. Cancer Sci. 2004;95:1–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Sadikovic B, et al. DNA methylation analysis using CpG microarrays is impaired in benzopyrene exposed cells. Toxicol Appl Pharmacol. 2007;225:300–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Nadeau K, et al. Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol. 2010;126(4):845–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu J, et al. Epigenetically mediated pathogenic effects of phenanthrene on regulatory T cells. J Toxicol. 2013;2013:967029.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Suter M, et al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metab Clin Exp. 2010;59:1481–90.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Anttila S, et al. Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking. Cancer Res. 2003;63:8623–8.PubMedGoogle Scholar
  13. 13.
    Kohli A, et al. Secondhand smoke in combination with ambient air pollution exposure is associated with increased CpG methylation and decreased expression of IGN-gamma in T effector cells and Foxp3 in T regulatory cells in children. Clin Epigenet. 2012;4:17–29.CrossRefGoogle Scholar
  14. 14.
    Engel LS, et al. Pooled analysis and meta-analysis of glutathione S-transferase M1 and bladder cancer: a HuGE review. Am J Epidemiol. 2002;156:95–109.CrossRefPubMedGoogle Scholar
  15. 15.
    Breton C, et al. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;180:462–7.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Breton C, et al. Heritability and role for the environment in DNA methylation in AXL receptor tyrosine kinase. Epigenetics. 2011;6:895–8.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Han JS, et al. LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression. BioEssays. 2005;27(8):775–84.CrossRefPubMedGoogle Scholar
  18. 18.
    Wan E, et al. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum Mol Genet. 2012;21(13):3073–82.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kim VS, et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science. 2013;340:1456–9.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Word B, et al. Cigarette smoke condensate induces differential expression and promoter methylation profiles of critical genes involved in lung cancer in NL-20 lung cells in vitro: short-term and chronic exposure. Int J Toxicol. 2012;32:23–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Yao H, Rahman I. Role of histone deacetlyase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Am J Physiol Lung Cell Mol Physiol. 2012;303:557–66.CrossRefGoogle Scholar
  22. 22.
    Osoata G, et al. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun. 2009;384:366–71.CrossRefPubMedGoogle Scholar
  23. 23.
    Adenuga D, et al. Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. Am J Respir Cell Biol. 2009;40:464–73.CrossRefGoogle Scholar
  24. 24.
    Burke H, et al. Prenatal and passive smoke exposure and incidence of asthma and wheeze: systematic review and meta-analysis. Pediatrics. 2012;129(4):735–44.CrossRefPubMedGoogle Scholar
  25. 25.
    Wongtrakool C, et al. Prenatal nicotine exposure alters lung function and airway geometry through alpha7 nicotinic receptors. Am J Respir Cell Mol Biol. 2012;46(5):695–702.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Latzin P, et al. Exposure to moderate air pollution during late pregnancy and cord blood cytokine secretion in healthy neonates. PLoS One. 2011;6(8):e23130.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Joubert B, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120:1425–31.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Herberth G, et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol. 2014;133:543–50.CrossRefPubMedGoogle Scholar
  29. 29.
    Janssen BG, et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol. 2013;10(22):1–11.Google Scholar
  30. 30.
    Tang W, et al. Maternal exposure to polycyclic aromatic hydrocarbons and 5′-CpG methylation of interferon-gamma in cord white blood cells. Environ Health Perspect. 2012;120:1195–200.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Murphy S, et al. Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene. 2012;494:36–43.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Wilhelm-Benartzi CS, et al. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect. 2012;120:296–302.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Wangsri S, et al. Patters and possible roles of LINE-1 methylation changes in smoke-exposed epithelia. PLoS One. 2012;7(9):1–15.CrossRefGoogle Scholar
  34. 34.
    Sharma S, Litonjua A. Asthma, allergy, and responses to methyl donor supplements and nutrients. J Allergy Clin Immunol. 2013. doi: 10.1016/j.jaci.2013.10.039.
  35. 35.
    Zhu M, et al. AluYb8 insertion in the MUTYH gene and risk of early-onset breast and gastric cancers in the Chinese population. Asian Pac J Cancer Prev. 2011;12(6):1451–5.PubMedGoogle Scholar
  36. 36.
    Rehan VK, et al. Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med. 2012;10:129.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • E. C. Klingbeil
    • 1
    Email author
  • K. M. Hew
    • 1
  • U. C. Nygaard
    • 1
    • 2
  • K. C. Nadeau
    • 1
  1. 1.Division of Allergy and ImmunologyStanford University School of MedicineStanfordUSA
  2. 2.Division of Environmental MedicineNorwegian Institute of Public HealthOsloNorway

Personalised recommendations