Immunologic Research

, Volume 58, Issue 2–3, pp 282–291 | Cite as

An essential role for the immune system in the mechanism of tumor regression following targeted oncogene inactivation

IMMUNOLOGY AT STANFORD UNIVERSITY

Abstract

Tumors are genetically complex and can have a multitude of mutations. Consequently, it is surprising that the suppression of a single oncogene can result in rapid and sustained tumor regression, illustrating the concept that cancers are often “oncogene addicted.” The mechanism of oncogene addiction has been presumed to be largely cell autonomous as a consequence of the restoration of normal physiological programs that induce proliferative arrest, apoptosis, differentiation, and/or cellular senescence. Interestingly, it has recently become apparent that upon oncogene inactivation, the immune response is critical in mediating the phenotypic consequences of oncogene addiction. In particular, CD4+ T cells have been suggested to be essential to the remodeling of the tumor microenvironment, including the shutdown of host angiogenesis and the induction of cellular senescence in the tumor. However, adaptive and innate immune cells are likely involved. Thus, the effectors of the immune system are involved not only in tumor initiation, tumor progression, and immunosurveillance, but also in the mechanism of tumor regression upon targeted oncogene inactivation. Hence, oncogene inactivation may be an effective therapeutic approach because it both reverses the neoplastic state within a cancer cell and reactivates the host immune response that remodels the tumor microenvironment.

Keywords

Oncogene addiction MYC Tumor recurrence Tumor microenvironment Tumor immunology 

Notes

Acknowledgments

The authors acknowledge current and former members of the Felsher laboratory. Within the Felsher laboratory, research has been funded by the Burroughs Welcome Fund Career Award, the Damon Runyon Foundation Lilly Clinical Investigator Award, NIH RO1 Grant Number CA 089305, 105102, 170378 PQ22, U54CA149145, U54CA143907, National Cancer Institute’s In-vivo Cellular and Molecular Imaging Center Grant Number CA 114747, Integrative Cancer Biology Program Grant Number CA 112973, NIH/NCI PO1 Grant Number CA034233, and the Leukemia and Lymphoma Society Translational Research Grant Number R6223-07 (D.W.F.). S.C.C. was previously supported by the Stanford University Cellular and Molecular Immunobiology Training Grant (NIH, 5 T32 AI07290) and is currently supported by an NIH NRSA from the NCI (F32CA177139).

Conflict of interests

The authors declare no competing financial interests.

References

  1. 1.
    Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002;297:102–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004;431:1112–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Hennighausen L, Wall RJ, Tillmann U, Li M, Furth PA. Conditional gene expression in secretory tissues and skin of transgenic mice using the MMTV-LTR and the tetracycline responsive system. J Cell Biochem. 1995;59:463–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell. 1999;4:199–207.PubMedCrossRefGoogle Scholar
  5. 5.
    Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O’Hagan R, Pantginis J, Zhou H, et al. Essential role for oncogenic Ras in tumour maintenance. Nature. 1999;400:468–72.PubMedCrossRefGoogle Scholar
  6. 6.
    D’Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A, et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med. 2001;7:235–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Fisher GH, Wellen SL, Klimstra D, Lenczowski JM, Tichelaar JW, Lizak MJ, Whitsett JA, Koretsky A, Varmus HE. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 2001;15:3249–62.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Huettner CS, Zhang P, Van Etten RA, Tenen DG. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet. 2000;24:57–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Marinkovic D, Marinkovic T, Mahr B, Hess J, Wirth T. Reversible lymphomagenesis in conditionally c-MYC expressing mice. Int J Cancer. 2004;110:336–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G, Felsher DW. Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood. 2003;101:2797–803.PubMedCrossRefGoogle Scholar
  11. 11.
    Felsher DW. Cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer. 2003;3:375–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Weinstein IB. Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science. 2002;297:63–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Felsher DW: Oncogene addiction versus oncogene amnesia: perhaps more than just a bad habit? Cancer Res 2008, 68:3081–3086; discussion 3086.Google Scholar
  15. 15.
    Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5:689–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Sharma SV, Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 2007;21:3214–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karchin R, Kinzler KW, Vogelstein B, Nowak MA. Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA. 2010;107:18545–50.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Restifo NP. Can antitumor immunity help to explain “oncogene addiction”? Cancer Cell. 2010;18:403–5.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Furth PA. Cancer prevention as biomodulation: targeting the initiating stimulus and secondary adaptations. Ann N Y Acad Sci. 2012;1271:1–9.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ding ZC, Huang L, Blazar BR, Yagita H, Mellor AL, Munn DH, Zhou G. Polyfunctional CD4(+) T cells are essential for eradicating advanced B-cell lymphoma after chemotherapy. Blood. 2012;120:2229–39.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Ding ZC, Zhou G. Cytotoxic chemotherapy and CD4+ effector T cells: an emerging alliance for durable antitumor effects. Clin Dev Immunol. 2012;2012:890178.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Anders K, Buschow C, Herrmann A, Milojkovic A, Loddenkemper C, Kammertoens T, Daniel P, Yu H, Charo J, Blankenstein T. Oncogene-targeting T cells reject large tumors while oncogene inactivation selects escape variants in mouse models of cancer. Cancer Cell. 2011;20:755–67.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8:151–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, Fisher RI, Braziel RM, Rimsza LM, Grogan TM, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351:2159–69.PubMedCrossRefGoogle Scholar
  27. 27.
    Shortt J, Johnstone RW: Oncogenes in cell survival and cell death. Cold Spring Harb Perspect Biol. 2012;4(12).Google Scholar
  28. 28.
    Baker SJ, Reddy EP. Targeted inhibition of kinases in cancer therapy. Mt Sinai J Med. 2010;77:573–86.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Houshmand P, Zlotnik A. Targeting tumor cells. Curr Opin Cell Biol. 2003;15:640–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Blay JY, Le Cesne A, Alberti L, Ray-Coquart I. Targeted cancer therapies. Bull Cancer. 2005;92:E13–8.PubMedGoogle Scholar
  31. 31.
    Soria JC, Blay JY, Spano JP, Pivot X, Coscas Y, Khayat D. Added value of molecular targeted agents in oncology. Ann Oncol. 2011;22:1703–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Nagai S, Takahashi T, Kurokawa M. The impact of molecularly targeted therapies upon the understanding of leukemogenesis and the role of hematopoietic stem cell transplantation in acute promyelocytic leukemia. Curr Stem Cell Res Ther. 2010;5:372–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 2012;11:873–86.PubMedCrossRefGoogle Scholar
  34. 34.
    Casey SC, Bellovin DI, Felsher DW. Noncanonical roles of the immune system in eliciting oncogene addiction. Curr Opin Immunol. 2013;25:246–58.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS, Squire J, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the college of American pathologists, international association for the study of lung cancer, and association for molecular pathology. Arch Pathol Lab Med. 2013;137:828–60.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    O’Bryant CL, Wenger SD, Kim M, Thompson LA. Crizotinib: a new treatment option for ALK-positive non-small cell lung cancer. Ann Pharmacother. 2013;47:189–97.PubMedCrossRefGoogle Scholar
  37. 37.
    Casaluce F, Sgambato A, Maione P, Rossi A, Ferrara C, Napolitano A, Palazzolo G, Ciardiello F, Gridelli C. ALK inhibitors: a new targeted therapy in the treatment of advanced NSCLC. Target Oncol. 2013;8:55–67.PubMedCrossRefGoogle Scholar
  38. 38.
    Younes A, Romaguera J, Fanale M, McLaughlin P, Hagemeister F, Copeland A, Neelapu S, Kwak L, Shah J, De Castro Faria S, et al. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes. J Clin Oncol. 2012;30:4161–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nat Rev Clin Oncol. 2011;8:25–37.PubMedCrossRefGoogle Scholar
  40. 40.
    Essmann F, Schulze-Osthoff K. Translational approaches targeting the p53 pathway for anti-cancer therapy. Br J Pharmacol. 2012;165:328–44.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Fruman DA, Rommel C. PI3 Kdelta inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov. 2011;1:562–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Roschewski M, Farooqui M, Aue G, Wilhelm F, Wiestner A. Phase I study of ON 01910.Na (Rigosertib), a multikinase PI3K inhibitor in relapsed/refractory B-cell malignancies. Leukemia. 2013;27:1920–3.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Hong DS, Bowles DW, Falchook GS, Messersmith WA, George GC, O’Bryant CL, Vo AC, Klucher K, Herbst RS, Eckhardt SG, et al. A multicenter phase I trial of PX-866, an oral irreversible phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2012;18:4173–82.PubMedCrossRefGoogle Scholar
  44. 44.
    Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503:548–51.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T, Rodig SJ, Kung AL, Bradner JE, Weinstock DM. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood. 2012;120:2843–52.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Hoeflich KP, Gray DC, Eby MT, Tien JY, Wong L, Bower J, Gogineni A, Zha J, Cole MJ, Stern HM, et al. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 2006;66:999–1006.PubMedCrossRefGoogle Scholar
  48. 48.
    Boxer RB, Jang JW, Sintasath L, Chodosh LA. Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell. 2004;6:577–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Giuriato S, Rabin K, Fan AC, Shachaf CM, Felsher DW. Conditional animal models: a strategy to define when oncogenes will be effective targets to treat cancer. Semin Cancer Biol. 2004;14:3–11.PubMedCrossRefGoogle Scholar
  50. 50.
    Felsher DW. Reversing cancer from inside and out: oncogene addiction, cellular senescence, and the angiogenic switch. Lymphat Res Biol. 2008;6:149–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Shachaf CM, Felsher DW. Rehabilitation of cancer through oncogene inactivation. Trends Mol Med. 2005;11:316–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Shachaf CM, Felsher DW. Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy. Cancer Res. 2005;65:4471–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Bellovin DI, Das B, Felsher DW. Tumor dormancy, oncogene addiction, cellular senescence, and self-renewal programs. Adv Exp Med Biol. 2013;734:91–107.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Giuriato S, Ryeom S, Fan AC, Bachireddy P, Lynch RC, Rioth MJ, van Riggelen J, Kopelman AM, Passegue E, Tang F, et al. Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc Natl Acad Sci U S A. 2006;103:16266–71.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH, White EL, Davis AC, Ihle JN, Cleveland JL. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 2002;16:2530–43.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Brandvold KA, Neiman P, Ruddell A. Angiogenesis is an early event in the generation of myc-induced lymphomas. Oncogene. 2000;19:2780–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Janz A, Sevignani C, Kenyon K, Ngo CV, Thomas-Tikhonenko A. Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res. 2000;28:2268–75.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Rakhra K, Bachireddy P, Zabuawala T, Zeiser R, Xu L, Kopelman A, Fan AC, Yang Q, Braunstein L, Crosby E, et al. CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell. 2010;18:485–98.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7:139–47.PubMedCrossRefGoogle Scholar
  60. 60.
    Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103:481–90.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1:46–54.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.PubMedCrossRefGoogle Scholar
  63. 63.
    de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 2005;7:411–23.PubMedCrossRefGoogle Scholar
  64. 64.
    Dougan M, Li D, Neuberg D, Mihm M, Googe P, Wong KK, Dranoff G. A dual role for the immune response in a mouse model of inflammation-associated lung cancer. J Clin Invest. 2011;121:2436–46.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Ruffell B, DeNardo DG, Affara NI, Coussens LM. Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev. 2010;21:3–10.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Gross E, Sunwoo JB, Bui JD. Cancer immunosurveillance and immunoediting by natural killer cells. Cancer J. 2013;19:483–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Torroella-Kouri M, Rodriguez D, Caso R. Alterations in macrophages and monocytes from tumor-bearing mice: evidence of local and systemic immune impairment. Immunol Res. 2013;57:86–98.PubMedCrossRefGoogle Scholar
  68. 68.
    Iannello A, Raulet DH: Immune surveillance of unhealthy cells by natural killer cells. Cold Spring Harb Symp Quant Biol. 2013. doi: 10.1101/sqb.2013.78.020255.
  69. 69.
    Raj N, Attardi LD. Tumor suppression: p53 alters immune surveillance to restrain liver cancer. Curr Biol. 2013;23:R527–30.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Gasser S, Raulet D. The DNA damage response, immunity and cancer. Semin Cancer Biol. 2006;16:344–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Chaturvedi AK, Pfeiffer RM, Chang L, Goedert JJ, Biggar RJ, Engels EA. Elevated risk of lung cancer among people with AIDS. AIDS. 2007;21:207–13.PubMedCrossRefGoogle Scholar
  72. 72.
    Mbulaiteye SM, Biggar RJ, Goedert JJ, Engels EA. Immune deficiency and risk for malignancy among persons with AIDS. J Acquir Immune Defic Syndr. 2003;32:527–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Dugue PA, Rebolj M, Garred P, Lynge E. Immunosuppression and risk of cervical cancer. Expert Rev Anticancer Ther. 2013;13:29–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Kubica AW, Brewer JD. Melanoma in immunosuppressed patients. Mayo Clin Proc. 2012;87:991–1003.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Hoover RN. Lymphoma risks in populations with altered immunity–a search for mechanism. Cancer Res. 1992;52:5477s–8s.PubMedGoogle Scholar
  76. 76.
    Boshoff C, Weiss R. AIDS-related malignancies. Nat Rev Cancer. 2002;2:373–82.PubMedCrossRefGoogle Scholar
  77. 77.
    Ray-Coquard I, Cropet C, Van Glabbeke M, Sebban C, Le Cesne A, Judson I, Tredan O, Verweij J, Biron P, Labidi I, et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009;69:5383–91.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Al-Tameemi M, Chaplain M, d’Onofrio A. Evasion of tumours from the control of the immune system: consequences of brief encounters. Biol Direct. 2012;7:31.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Ribas A. Immunoediting the cancer genome–a new approach for personalized cancer therapy? Pigment Cell Melanoma Res. 2012;25:297–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev. 2008;224:141–65.PubMedCrossRefGoogle Scholar
  81. 81.
    Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006;6:715–27.PubMedCrossRefGoogle Scholar
  82. 82.
    Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, Kepp O, Metivier D, Galluzzi L, Perfettini JL, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21:79–91.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology. 2013;2:e23510.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, Foon KA, Liles TM, Dallaire BK, et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90:2188–95.PubMedGoogle Scholar
  85. 85.
    Pegram MD, Konecny G, Slamon DJ. The molecular and cellular biology of HER2/neu gene amplification/overexpression and the clinical development of herceptin (trastuzumab) therapy for breast cancer. Cancer Treat Res. 2000;103:57–75.PubMedCrossRefGoogle Scholar
  86. 86.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61.PubMedCrossRefGoogle Scholar
  87. 87.
    Shiao SL, Coussens LM. The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia. 2010;15:411–21.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Pardoll DM. Immunology beats cancer: a blueprint for successful translation. Nat Immunol. 2012;13:1129–32.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Acharya UH, Jeter JM. Use of ipilimumab in the treatment of melanoma. Clin Pharmacol. 2013;5:21–7.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Devaud C, John LB, Westwood JA, Darcy PK, Kershaw MH. Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. Oncoimmunology. 2013;2:e25961.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Chao MP, Weissman IL, Majeti R. The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24:225–32.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13:84–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Mattarollo SR, West AC, Steegh K, Duret H, Paget C, Martin B, Matthews GM, Shortt J, Chesi M, Bergsagel PL, et al. NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood. 2012;120:3019–29.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Kawakami Y, Yaguchi T, Sumimoto H, Kudo-Saito C, Tsukamoto N, Iwata-Kajihara T, Nakamura S, Nishio H, Satomi R, Kobayashi A, et al. Cancer-induced immunosuppressive cascades and their reversal by molecular-targeted therapy. Ann N Y Acad Sci. 2013;1284:80–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992;89:5547–51.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med. 2012;2:a006627.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Li SS, Liu Z, Uzunel M, Sundqvist KG. Endogenous thrombospondin-1 is a cell-surface ligand for regulation of integrin-dependent T-lymphocyte adhesion. Blood. 2006;108:3112–20.PubMedCrossRefGoogle Scholar
  98. 98.
    Baek KH, Bhang D, Zaslavsky A, Wang LC, Vachani A, Kim CF, Albelda SM, Evan GI, Ryeom S. Thrombospondin-1 mediates oncogenic Ras-induced senescence in premalignant lung tumors. J Clin Invest. 2013;123:4375–89.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Sosale N, Discher DE. Marker-of-self becomes marker-of-senescence. Blood. 2012;119:5343–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–18.PubMedCrossRefGoogle Scholar
  101. 101.
    Beatty G, Paterson Y. IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4 + T cells requires tumor responsiveness to IFN-gamma. J Immunol. 2001;166:2276–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–31.PubMedCrossRefGoogle Scholar
  103. 103.
    Muller-Hermelink N, Braumuller H, Pichler B, Wieder T, Mailhammer R, Schaak K, Ghoreschi K, Yazdi A, Haubner R, Sander CA, et al. TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell. 2008;13:507–18.PubMedCrossRefGoogle Scholar
  104. 104.
    Whitfield JR, Soucek L. Tumor microenvironment: becoming sick of Myc. Cell Mol Life Sci. 2012;69:931–4.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Galluzzi L, Vitale I, Kroemer G. Past, present, and future of molecular and cellular oncology. Front Oncol. 2011;1:1.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Somasundaram R, Villanueva J, Herlyn M. Intratumoral heterogeneity as a therapy resistance mechanism: role of melanoma subpopulations. Adv Pharmacol. 2012;65:335–59.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Al-Ejeh F, Smart CE, Morrison BJ, Chenevix-Trench G, Lopez JA, Lakhani SR, Brown MP, Khanna KK. Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis. 2011;32:650–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med. 2007;13:1211–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Reimann M, Lee S, Loddenkemper C, Dorr JR, Tabor V, Aichele P, Stein H, Dorken B, Jenuweins T, Schmitt CA. Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell. 2010;17:262–72.PubMedCrossRefGoogle Scholar
  110. 110.
    Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z, Palmer DC, Reger RN, Borman ZA, Zhang L, et al. Tumor-specific CD8 + T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res. 2010;70:6725–34.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Zhang L, Yu Z, Muranski P, Palmer DC, Restifo NP, Rosenberg SA, Morgan RA: Inhibition of TGF-beta signaling in genetically engineered tumor antigen-reactive T cells significantly enhances tumor treatment efficacy. Gene Ther. 2013;20(5):575–80.Google Scholar
  112. 112.
    Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12:671–84.PubMedCrossRefGoogle Scholar
  113. 113.
    Klebanoff CA, Gattinoni L, Restifo NP. Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? J Immunother. 2012;35:651–60.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, Bruneval P, Trajanoski Z, Fridman WH, Pages F, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011;29:610–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Prestwich RJ, Errington F, Hatfield P, Merrick AE, Ilett EJ, Selby PJ, Melcher AA. The immune system–is it relevant to cancer development, progression and treatment? Clin Oncol (R Coll Radiol). 2008;20:101–12.CrossRefGoogle Scholar
  116. 116.
    Hannani D, Sistigu A, Kepp O, Galluzzi L, Kroemer G, Zitvogel L. Prerequisites for the antitumor vaccine-like effect of chemotherapy and radiotherapy. Cancer J. 2011;17:351–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L, Locher C, Tesniere A, Martins I, Ly A, Haynes NM, et al. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol. 2010;22:113–24.PubMedCrossRefGoogle Scholar
  118. 118.
    Dougan M, Dranoff G. Immune therapy for cancer. Annu Rev Immunol. 2009;27:83–117.PubMedCrossRefGoogle Scholar
  119. 119.
    Menard C, Blay JY, Borg C, Michiels S, Ghiringhelli F, Robert C, Nonn C, Chaput N, Taieb J, Delahaye NF, et al. Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res. 2009;69:3563–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF, Kefford RF, Hersey P, Scolyer RA. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res. 2012;18:1386–94.PubMedCrossRefGoogle Scholar
  121. 121.
    Wilmott JS, Scolyer RA, Long GV, Hersey P. Combined targeted therapy and immunotherapy in the treatment of advanced melanoma. Oncoimmunology. 2012;1:997–9.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Liu C, Peng W, Xu C, Lou Y, Zhang M, Wargo JA, Chen J, Li HS, Watowich S, Yang Y, et al.: BRAF inhibition increases tumor infiltration by T cells and enhances the anti-tumor activity of adoptive immunotherapy in mice. Clin Cancer Res. 2013;19(2):393–403.Google Scholar
  123. 123.
    Sumimoto H, Imabayashi F, Iwata T, Kawakami Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203:1651–6.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Bajor DL, Vonderheide RH. Rehabilitation for oncogene addiction: role of immunity in cellular sobriety. Clin Cancer Res. 2012;18:1192–4.PubMedCrossRefGoogle Scholar
  125. 125.
    Knight DA, Ngiow SF, Li M, Parmenter T, Mok S, Cass A, Haynes NM, Kinross K, Yagita H, Koya RC, et al. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J Clin Invest. 2013;123:1371–81.PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Bex A, Etto T, Vyth-Dreese F, Blank C, Griffioen AW. Immunological heterogeneity of the RCC microenvironment: do targeted therapies influence immune response? Curr Oncol Rep. 2012;14:230–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A, Wood L, Elson P, Garcia J, Dreicer R, et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res. 2008;14:6674–82.PubMedCrossRefGoogle Scholar
  128. 128.
    Busse A, Asemissen AM, Nonnenmacher A, Braun F, Ochsenreither S, Stather D, Fusi A, Schmittel A, Miller K, Thiel E, et al. Immunomodulatory effects of sorafenib on peripheral immune effector cells in metastatic renal cell carcinoma. Eur J Cancer. 2011;47:690–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Zhang H, Melamed J, Wei P, Cox K, Frankel W, Bahnson RR, Robinson N, Pyka R, Liu Y, Zheng P. Concordant down-regulation of proto-oncogene PML and major histocompatibility antigen HLA class I expression in high-grade prostate cancer. Cancer Immun. 2003;3:2.PubMedGoogle Scholar
  130. 130.
    Chang CL, Hsu YT, Wu CC, Yang YC, Wang C, Wu TC, Hung CF. Immune mechanism of the antitumor effects generated by bortezomib. J Immunol. 2012;189:3209–20.PubMedCrossRefGoogle Scholar
  131. 131.
    Guttman-Yassky E, Mita A, De Jonge M, Matthews L, McCarthy S, Iwata KK, Verweij J, Rowinsky EK, Krueger JG. Characterisation of the cutaneous pathology in non-small cell lung cancer (NSCLC) patients treated with the EGFR tyrosine kinase inhibitor erlotinib. Eur J Cancer. 2010;46:2010–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Jaime-Ramirez AC, Mundy-Bosse BL, Kondadasula S, Jones NB, Roda JM, Mani A, Parihar R, Karpa V, Papenfuss TL, LaPerle KM, et al. IL-12 enhances the antitumor actions of trastuzumab via NK cell IFN-gamma production. J Immunol. 2011;186:3401–9.PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Kohrt HE, Houot R, Weiskopf K, Goldstein MJ, Scheeren F, Czerwinski D, Colevas AD, Weng WK, Clarke MF, Carlson RW, et al. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Invest. 2012;122:1066–75.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM, Ferrone CR, Flaherty KT, Lawrence DP, Fisher DE, et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 2010;70:5213–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Catellani S, Pierri I, Gobbi M, Poggi A, Zocchi MR. Imatinib treatment induces CD5 + B lymphocytes and IgM natural antibodies with anti-leukemic reactivity in patients with chronic myelogenous leukemia. PLoS ONE. 2011;6:e18925.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Krusch M, Salih HR. Effects of BCR-ABL inhibitors on anti-tumor immunity. Curr Med Chem. 2011;18:5174–84.PubMedCrossRefGoogle Scholar
  137. 137.
    Ohyashiki K, Katagiri S, Tauchi T, Ohyashiki JH, Maeda Y, Matsumura I, Kyo T. Increased natural killer cells and decreased CD3(+)CD8(+)CD62L(+) T cells in CML patients who sustained complete molecular remission after discontinuation of imatinib. Br J Haematol. 2012;157:254–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Kreutzman A, Juvonen V, Kairisto V, Ekblom M, Stenke L, Seggewiss R, Porkka K, Mustjoki S. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood. 2010;116:772–82.PubMedCrossRefGoogle Scholar
  139. 139.
    Chen J, Schmitt A, Giannopoulos K, Chen B, Rojewski M, Dohner H, Bunjes D, Schmitt M. Imatinib impairs the proliferation and function of CD4 + CD25 + regulatory T cells in a dose-dependent manner. Int J Oncol. 2007;31:1133–9.PubMedGoogle Scholar
  140. 140.
    Blank CU, Hooijkaas AI, Haanen JB, Schumacher TN. Combination of targeted therapy and immunotherapy in melanoma. Cancer Immunol Immunother. 2011;60:1359–71.PubMedCrossRefGoogle Scholar
  141. 141.
    Wrzesinski C, Paulos CM, Kaiser A, Muranski P, Palmer DC, Gattinoni L, Yu Z, Rosenberg SA, Restifo NP. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother. 2010;33:1–7.PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Humphrey RW, Brockway-Lunardi LM, Bonk DT, Dohoney KM, Doroshow JH, Meech SJ, Ratain MJ, Topalian SL, Pardoll DM. Opportunities and challenges in the development of experimental drug combinations for cancer. J Natl Cancer Inst. 2011;103:1222–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12:237–51.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stephanie C. Casey
    • 1
  • Yulin Li
    • 1
  • Dean W. Felsher
    • 1
  1. 1.Division of Oncology, Departments of Medicine and PathologyStanford University School of MedicineStanfordUSA

Personalised recommendations