Immunologic Research

, Volume 60, Issue 1, pp 105–111 | Cite as

Expansion of regulatory T cells from umbilical cord blood and adult peripheral blood CD4+CD25+ T cells

  • Syh-Jae Lin
  • Chun-Hao Lu
  • Dah-Chin Yan
  • Pei-Tzu Lee
  • Hsiu-Shan Hsiao
  • Ming-Ling Kuo


CD4+CD25+ regulatory T cells (Treg), if properly expanded from umbilical cord blood (UCB), may provide a promising immunotherapeutic tool. Our previous data demonstrated that UCB CD4+CD25+ T cells with 4-day stimulation have comparable phenotypes and suppressive function to that of adult peripheral blood (APB) CD4+CD25+ T cells. We further examined whether 2-week culture would achieve higher expansion levels of Tregs. UCB CD4+CD25+ T cells and their APB counterparts were stimulated with anti-CD3/anti-CD28 in the presence of IL-2 or IL-15 for 2 weeks. The cell proliferation and forkhead box P3 (FoxP3) expression were examined. The function of the expanded cells was then investigated by suppressive assay. IL-21 was applied to study whether it counteracts the function of UCB and APB CD4+CD25+ T cells. The results indicate that UCB CD4+CD25+ T cells expanded much better than their APB counterparts. IL-2 was superior to expand UCB and APB Tregs for 2 weeks than IL-15. FoxP3 expression which peaked on Day 10–14 was comparable. Most importantly, expanded UCB Tregs showed greater suppressive function in allogeneic mixed lymphocyte reaction. The addition of IL-21, however, counteracted the suppressive function of expanded UCB and APB Tregs. The results support using UCB as a source of Treg cells.


IL-2 IL-15 IL-21 Regulatory T cells FoxP3 



We thank all the health volunteers for participating in this study. This study was supported in part by grants from National Science Council of Republic of China: NSC96-2314-B182A-042-MY2 and NSC101-2314-B-182-033 and grants from Chang Gung Memorial Hospital: CMRPG4A0052, CMRPD4A0053, CMRPD1A0172~3, and CMRPD190511~3.

Conflict of interest

The authors declare no financial or commercial conflict of interest.


  1. 1.
    Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2011;182(1):18–32.CrossRefGoogle Scholar
  2. 2.
    Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196(3):389–99.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002;99(10):3493–9.CrossRefPubMedGoogle Scholar
  5. 5.
    June CH, Blazar BR. Clinical application of expanded CD4+25+ cells. Semin Immunol. 2006;18(2):78–88.CrossRefPubMedGoogle Scholar
  6. 6.
    Godfrey WR, Spoden DJ, Ge YG, et al. Cord blood CD4+CD25+-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005;105(2):750–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Takahata Y, Nomura A, Takada H, et al. CD4+CD25+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol. 2004;32(7):622–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Brown JA, Boussiotis VA. Umbilical cord blood transplantation: basic biology and clinical challenges to immune reconstitution. Clin Immunol. 2008;127(3):286–97.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Lin SJ, Yan DC, Lee YC, Hsiao HS, Lee PT, Liang YW, Kuo ML. Umbilical cord blood immunology: relevance to stem cell transplantation. Clin Rev Allergy Immunol. 2012;42(1):45–57.CrossRefPubMedGoogle Scholar
  10. 10.
    Brunstein CG, Miller JS, Cao Q, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Zorn E, Mohseni M, Kim H, et al. Combined CD4+ donor lymphocyte infusion and low-dose recombinant IL-2 expand FOXP3+ regulatory T cells following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2009;15(3):382–8.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Carson WE, Giri JG, Lindemann MJ, et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med. 1994;180(4):1395–403.CrossRefPubMedGoogle Scholar
  13. 13.
    Imamichi H, Sereti I, Lane HC. IL-15 acts as a potent inducer of CD4+CD25hi cells expressing FOXP3. Eur J Immunol. 2008;38(6):1621–30.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Yates J, Rovis F, Mitchell P, et al. The maintenance of human CD4+ CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int Immunol. 2007;19(6):785–99.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee CC, Lin SJ, Cheng PJ, Kuo ML. The regulatory function of umbilical cord blood CD4+CD25+ T cells stimulated with anti-CD3/anti-CD28 and exogenous IL-2 or IL-15. Pediatr Allergy Immunol. 2009;20(7):624–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Chang CC, Satwani P, Oberfield N, Vlad G, Simpson LL, Cairo MS. Increased induction of allogeneic-specific cord blood CD4+CD25+ regulatory T (Treg) cells: a comparative study of naive and antigenic-specific cord blood Treg cells. Exp Hematol. 2005;33(12):1508–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Asanuma S, Tanaka J, Sugita J, et al. Expansion of CD4+CD25+ regulatory T cells from cord blood CD4+ cells using the common γ-chain cytokines (IL-2 and IL-15) and rapamycin. Ann Hematol. 2011;90(6):617–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Wuest TY, Willette-Brown J, Durum SK, Hurwitz AA. The influence of IL-2 family cytokines on activation and function of naturally occurring regulatory T cells. J Leukoc Biol. 2008;84(4):973–80.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Geiger TL, Tauro S. Nature and nurture in Foxp3+ regulatory T cell development, stability, and function. Hum Immunol. 2012;73(3):232–9.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Rowe JH, Ertelt JM, Way SS. Foxp3+ regulatory T cells, immune stimulation and host defense against infection. Immunology. 2012;136(1):1–10.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Roncador G, Brown PJ, Maestre L, et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol. 2005;35(6):1681–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Fritzsching B, Oberle N, Pauly E, et al. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood. 2006;108(10):3371–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Peluso I, Fantini MC, Fina D, Caruso R, Boirivant M, MacDonald TT, Pallone F, Monteleone G. IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol. 2007;178(2):732–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Monteleone G, Pallone F, MacDonald TT. Interleukin-21: a critical regulator of the balance between effector and regulatory T-cell responses. Trends Immunol. 2008;29(6):290–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Wurster AL, Rodgers VL, Satoskar AR, Whitters MJ, Young DA, Collins M, Grusby MJ. IL-21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. J Exp Med. 2002;196(7):969–77.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Suto A, Wurster AL, Reiner SL, Grusby MJ. IL-21 inhibits IFN-gamma production in developing Th1 cells through the repression of Eomesodermin expression. J Immunol. 2006;177(6):3721–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Fröhlich A, Marsland BJ, Sonderegger I, Kurrer M, Hodge MR, Harris NL, Kopf M. IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood. 2007;109(5):2023–31.CrossRefPubMedGoogle Scholar
  28. 28.
    Attridge K, Wang CJ, Wardzinski L, Kenefeck R, Chamberlain JL, Manzotti C, Kopf M, Walker LS. IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood. 2012;119(20):4656–64.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Syh-Jae Lin
    • 1
  • Chun-Hao Lu
    • 2
  • Dah-Chin Yan
    • 1
  • Pei-Tzu Lee
    • 3
  • Hsiu-Shan Hsiao
    • 3
  • Ming-Ling Kuo
    • 2
    • 4
  1. 1.Division of Asthma, Allergy, and Rheumatology, Department of PediatricsChang Gung Memorial Hospital and College of Medicine, Chang Gung UniversityTaoyuanTaiwan
  2. 2.Graduate Institute of Biomedical Sciences, College of MedicineChang Gung UniversityTaoyuanTaiwan
  3. 3.Health Research DivisionChang Gung Memorial HospitalTaoyuanTaiwan
  4. 4.Department of Microbiology and Immunology, College of MedicineChang Gung UniversityTaoyuanTaiwan

Personalised recommendations