Advertisement

Immunologic Research

, Volume 57, Issue 1–3, pp 311–325 | Cite as

Secreted heat shock protein gp96-Ig: next-generation vaccines for cancer and infectious diseases

  • Natasa Strbo
  • Arlene Garcia-Soto
  • Taylor H. Schreiber
  • Eckhard R. Podack
Immunology & Microbiology in Miami

Abstract

Over the past decade, our laboratory has developed a secreted heat shock protein (HSP), chaperone gp96, cell-based vaccine that generates effective anti-tumor and anti-infectious immunity in vivo. Gp96-peptide complexes were identified as an extremely efficient stimulator of MHC I-mediated antigen cross-presentation, generating CD8 cytotoxic T-lymphocyte responses detectable in blood, spleen, gut and reproductive tract to femto-molar concentrations of antigen. These studies provided the first evidence that cell-based gp96-Ig-secreting vaccines may serve as a potent modality to induce both systemic and mucosal immunity. This approach takes advantage of the combined adjuvant and antigen delivery capacity of gp96 for the generation of cytotoxic immunity against a wide range of antigens in both anti-vial and anti-cancer vaccination. Here, we review the vaccine design that utilizes the unique property/ability of endoplasmic HSP gp96 to bind antigenic peptides and deliver them to antigen-presenting cells.

Keywords

Heat shock proteins Gp96 Vaccine Cancer HIV Immunotherapy 

Notes

Acknowledgments

The work is supported by the NIAID R33 AI 073234, Intramural Research Program of the NIH, NCATS NIH UL1TR000460 and 1KL2TR000461, Miami-CFAR and NIH P30A1073961, National Cancer Institute, Center for Cancer Research and support from the Alliance for Cancer Gene Therapy (ACGT), New York.

Conflict of interest

Dr. E. R. Podack and the University of Miami have financial interest and hold equity in a commercial enterprise developing this vaccine technology.

References

  1. 1.
    Nover L, Hightower L. Heat shock and development. Introduction. Results Probl Cell Differ. 1991;17:1–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Welch WJ. How cells respond to stress. Sci Am. 1993;268(5):56–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998;12(24):3788–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet. 1993;27:437–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991;66(2):191–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Gething MJ, Sambrook J. Protein folding in the cell. Nature. 1992;355(6355):33–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee AS. The accumulation of three specific proteins related to glucose-regulated proteins in a temperature-sensitive hamster mutant cell line K12. J Cell Physiol. 1981;106(1):119–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Koch G, Smith M, Macer D, Webster P, Mortara R. Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell Sci. 1986;86:217–32.PubMedGoogle Scholar
  9. 9.
    Lewis MJ, Turco SJ, Green M. Structure and assembly of the endoplasmic reticulum. Biosynthetic sorting of endoplasmic reticulum proteins. J Biol Chem. 1985;260(11):6926–31.PubMedGoogle Scholar
  10. 10.
    Srivastava PK, DeLeo AB, Old LJ. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A. 1986;83(10):3407–11.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science. 1997;278(5335):117–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Kovalchin JT, Murthy AS, Horattas MC, Guyton DP, Chandawarkar RY. Determinants of efficacy of immunotherapy with tumor-derived heat shock protein gp96. Cancer Immun. 2001;1:7.PubMedGoogle Scholar
  13. 13.
    Palladino MA Jr, Srivastava PK, Oettgen HF, DeLeo AB. Expression of a shared tumor-specific antigen by two chemically induced BALB/c sarcomas. Cancer Res. 1987;47(19):5074–9.PubMedGoogle Scholar
  14. 14.
    Li Z, Srivastava PK. Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J. 1993;12(8):3143–51.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Dollins DE, Immormino RM, Gewirth DT. Structure of unliganded GRP94, the endoplasmic reticulum Hsp90. Basis for nucleotide-induced conformational change. J Biol Chem. 2005;280(34):30438–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Immormino RM, Dollins DE, Shaffer PL, Soldano KL, Walker MA, Gewirth DT. Ligand-induced conformational shift in the N-terminal domain of GRP94, an Hsp90 chaperone. J Biol Chem. 2004;279(44):46162–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med. 1993;178(4):1391–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Peng P, Menoret A, Srivastava PK. Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography. J Immunol Methods. 1997;204(1):13–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Wearsch PA, Nicchitta CV. Interaction of endoplasmic reticulum chaperone GRP94 with peptide substrates is adenine nucleotide-independent. J Biol Chem. 1997;272(8):5152–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Sastry S, Linderoth N. Molecular mechanisms of peptide loading by the tumor rejection antigen/heat shock chaperone gp96 (GRP94). J Biol Chem. 1999;274(17):12023–35.PubMedCrossRefGoogle Scholar
  21. 21.
    Linderoth NA, Popowicz A, Sastry S. Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). J Biol Chem. 2000;275(8):5472–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Linderoth NA, Simon MN, Hainfeld JF, Sastry S. Binding of antigenic peptide to the endoplasmic reticulum-resident protein gp96/GRP94 heat shock chaperone occurs in higher order complexes. Essential role of some aromatic amino acid residues in the peptide-binding site. J Biol Chem. 2001;276(14):11049–54.PubMedCrossRefGoogle Scholar
  23. 23.
    Linderoth NA, Simon MN, Rodionova NA, Cadene M, Laws WR, Chait BT, et al. Biophysical analysis of the endoplasmic reticulum-resident chaperone/heat shock protein gp96/GRP94 and its complex with peptide antigen. Biochemistry. 2001;40(5):1483–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Biswas C, Sriram U, Ciric B, Ostrovsky O, Gallucci S, Argon Y. The N-terminal fragment of GRP94 is sufficient for peptide presentation via professional antigen-presenting cells. Int Immunol. 2006;18(7):1147–57.PubMedCrossRefGoogle Scholar
  25. 25.
    Gidalevitz T, Biswas C, Ding H, Schneidman-Duhovny D, Wolfson HJ, Stevens F, et al. Identification of the N-terminal peptide binding site of glucose-regulated protein 94. J Biol Chem. 2004;279(16):16543–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Ying M, Flatmark T. Binding of the viral immunogenic octapeptide VSV8 to native glucose-regulated protein Grp94 (gp96) and its inhibition by the physiological ligands ATP and Ca2+. FEBS J. 2006;273(3):513–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrancois L, et al. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity. 2007;26(2):215–26.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Melnick J, Dul JL, Argon Y. Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Natures. 1994;370(6488):373–5.CrossRefGoogle Scholar
  29. 29.
    Randow F, Seed B. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat Cell Biol. 2001;3(10):891–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 1995;269(5230):1585–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol. 1994;152(11):5398–403.PubMedGoogle Scholar
  32. 32.
    Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000;12(11):1539–46.PubMedCrossRefGoogle Scholar
  33. 33.
    Bevan MJ, Minor H. antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T cell level during in vivo priming. J Immunol. 1976;117(6):2233–8.PubMedGoogle Scholar
  34. 34.
    Bevan MJ. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med. 1976;143(5):1283–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Bevan MJ, Langman RE, Cohn M. H-2 antigen-specific cytotoxic T cells induced by concanavalin A: estimation of their relative frequency. Eur J Immunol. 1976;6(3):150–6. doi: 10.1002/eji.1830060303.PubMedCrossRefGoogle Scholar
  36. 36.
    Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev. 2005;207:166–83. doi: 10.1111/j.0105-2896.2005.00301.x.PubMedCrossRefGoogle Scholar
  37. 37.
    Kurotaki T, Tamura Y, Ueda G, Oura J, Kutomi G, Hirohashi Y, et al. Efficient cross-presentation by heat shock protein 90-peptide complex-loaded dendritic cells via an endosomal pathway. J Immunol. 2007;179(3):1803–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Binder RJ, Harris ML, Menoret A, Srivastava PK. Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol. 2000;165(5):2582–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol. 1999;162(7):3757–60.PubMedGoogle Scholar
  40. 40.
    Singh-Jasuja H, Toes RE, Spee P, Munz C, Hilf N, Schoenberger SP, et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med. 2000;191(11):1965–74.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Habich C, Baumgart K, Kolb H, Burkart V. The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol. 2002;168(2):569–76.PubMedCrossRefGoogle Scholar
  42. 42.
    Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol. 2000;1(2):151–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001;14(3):303–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci U S A. 2004;101(16):6128–33.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Banerjee PP, Vinay DS, Mathew A, Raje M, Parekh V, Prasad DV, et al. Evidence that glycoprotein 96 (B2), a stress protein, functions as a Th2-specific costimulatory molecule. J Immunol. 2002;169(7):3507–18.PubMedCrossRefGoogle Scholar
  46. 46.
    Berwin B, Delneste Y, Lovingood RV, Post SR, Pizzo SV. SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J Biol Chem. 2004;279(49):51250–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Calderwood SK, Mambula SS, Gray PJ Jr. Extracellular heat shock proteins in cell signaling and immunity. Ann N Y Acad Sci. 2007;1113:28–39.PubMedCrossRefGoogle Scholar
  48. 48.
    Singh-Jasuja H, Hilf N, Scherer HU, Arnold-Schild D, Rammensee HG, Toes RE, et al. The heat shock protein gp96: a receptor-targeted cross-priming carrier and activator of dendritic cells. Cell Stress Chaperones. 2000;5(5):462–70.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol. 2000;30(8):2211–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002;277(17):15028–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem. 2002;277(23):20847–53.PubMedCrossRefGoogle Scholar
  52. 52.
    Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol. 1997;15:821–50. doi: 10.1146/annurev.immunol.15.1.821.PubMedCrossRefGoogle Scholar
  53. 53.
    Kato Y, Kajiwara C, Ishige I, Mizukami S, Yamazaki C, Eikawa S, et al. HSP70 and HSP90 differentially regulate translocation of extracellular antigen to the cytosol for cross-presentation. Autoimmune Dis. 2012;2012:745962. doi: 10.1155/2012/745962.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Binder RJ, Blachere NE, Srivastava PK. Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chem. 2001;276(20):17163–71.PubMedCrossRefGoogle Scholar
  55. 55.
    Matsutake T, Sawamura T, Srivastava PK. High efficiency CD91- and LOX-1-mediated re-presentation of gp96-chaperoned peptides by MHC II molecules. Cancer Immun. 2010;10:7.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Ishii T, Udono H, Yamano T, Ohta H, Uenaka A, Ono T, et al. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol. 1999;162(3):1303–9.PubMedGoogle Scholar
  57. 57.
    Li C, Buckwalter MR, Basu S, Garg M, Chang J, Srivastava PK. Dendritic cells sequester antigenic epitopes for prolonged periods in the absence of antigen-encoding genetic information. Proc Natl Acad Sci U S A. 2012;109(43):17543–8. doi: 10.1073/pnas.1205867109.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Panjwani NN, Popova L, Srivastava PK. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol. 2002;168(6):2997–3003.PubMedCrossRefGoogle Scholar
  59. 59.
    Lehner T, Bergmeier LA, Wang Y, Tao L, Sing M, Spallek R, et al. Heat shock proteins generate beta-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur J Immunol. 2000;30(2):594–603.PubMedCrossRefGoogle Scholar
  60. 60.
    Chen W, Syldath U, Bellmann K, Burkart V, Kolb H. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol. 1999;162(6):3212–9.PubMedGoogle Scholar
  61. 61.
    Binder RJ, Anderson KM, Basu S, Srivastava PK. Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol. 2000;165(11):6029–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Yamazaki K, Nguyen T, Podack ER. Cutting edge: tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J Immunol. 1999;163(10):5178–82.PubMedGoogle Scholar
  63. 63.
    Strbo N, Vaccari M, Pahwa S, Kolber MA, Fisher E, Gonzalez L, et al. Gp96 SIV Ig immunization induces potent polyepitope specific, multifunctional memory responses in rectal and vaginal mucosa. Vaccine. 2011;29(14):2619–25. doi: 10.1016/j.vaccine.2011.01.044.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Strbo N, Vaccari M, Pahwa S, Kolber MA, Doster MN, Fisher E, et al. Cutting edge: novel vaccination modality provides significant protection against mucosal infection by highly pathogenic simian immunodeficiency virus. J Immunol. 2013;190(6):2495–9. doi: 10.4049/jimmunol.1202655.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Oizumi S, Strbo N, Pahwa S, Deyev V, Podack ER. Molecular and cellular requirements for enhanced antigen cross-presentation to CD8 cytotoxic T lymphocytes. J Immunol. 2007;179(4):2310–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Strbo N, Podack ER. Secreted heat shock protein gp96-Ig: an innovative vaccine approach. Am J Reprod Immunol. 2008;59(5):407–16. doi: 10.1111/j.1600-0897.2008.00594.x.PubMedCrossRefGoogle Scholar
  67. 67.
    Oizumi S, Deyev V, Yamazaki K, Schreiber T, Strbo N, Rosenblatt J, et al. Surmounting tumor-induced immune suppression by frequent vaccination or immunization in the absence of B cells. J Immunother. 2008;31(4):394–401. doi: 10.1097/CJI.0b013e31816bc74d.PubMedCrossRefGoogle Scholar
  68. 68.
    Strbo N, Oizumi S, Sotosek-Tokmadzic V, Podack ER. Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity. 2003;18(3):381–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Masopust D, Vezys V, Wherry EJ, Barber DL, Ahmed R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J Immunol. 2006;176(4):2079–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Akondy RS, Monson ND, Miller JD, Edupuganti S, Teuwen D, Wu H, et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J Immunol. 2009;183(12):7919–30. doi: 10.4049/jimmunol.0803903.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Ahmed R, Bevan MJ, Reiner SL, Fearon DT. The precursors of memory: models and controversies. Nat Rev Immunol. 2009;9(9):662–8. doi: 10.1038/nri2619.PubMedCrossRefGoogle Scholar
  72. 72.
    Lefrancois L. Development, trafficking, and function of memory T-cell subsets. Immunol Rev. 2006;211:93–103. doi: 10.1111/j.0105-2896.2006.00393.x.PubMedCrossRefGoogle Scholar
  73. 73.
    Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science. 2008;319(5860):198–202. doi: 10.1126/science.1151869.PubMedCrossRefGoogle Scholar
  74. 74.
    Picker LJ, Reed-Inderbitzin EF, Hagen SI, Edgar JB, Hansen SG, Legasse A, et al. IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates. J Clin Invest. 2006;116(6):1514–24. doi: 10.1172/JCI27564.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Strbo N, Pahwa S, Kolber MA, Gonzalez L, Fisher E, Podack ER. Cell-secreted Gp96-Ig-peptide complexes induce lamina propria and intraepithelial CD8+ cytotoxic T lymphocytes in the intestinal mucosa. Mucosal Immunol. 2010;3(2):182–92. doi: 10.1038/mi.2009.127.PubMedCrossRefGoogle Scholar
  76. 76.
    Masopust D. Developing an HIV cytotoxic T-lymphocyte vaccine: issues of CD8 T-cell quantity, quality and location. J Intern Med. 2009;265(1):125–37. doi: 10.1111/j.1365-2796.2008.02054.x.PubMedCrossRefGoogle Scholar
  77. 77.
    Li Q, Skinner PJ, Ha SJ, Duan L, Mattila TL, Hage A, et al. Visualizing antigen-specific and infected cells in situ predicts outcomes in early viral infection. Science. 2009;323(5922):1726–9. doi: 10.1126/science.1168676.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G, Forster R, et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med. 2005;202(8):1063–73. doi: 10.1084/jem.20051100.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Coombes JL, Robinson NJ, Maloy KJ, Uhlig HH, Powrie F. Regulatory T cells and intestinal homeostasis. Immunol Rev. 2005;204:184–94. doi: 10.1111/j.0105-2896.2005.00250.x.PubMedCrossRefGoogle Scholar
  80. 80.
    Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006;66(11):5527–36. doi: 10.1158/0008-5472.CAN-05-4128.PubMedCrossRefGoogle Scholar
  81. 81.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. doi: 10.1038/ni1102-991.PubMedCrossRefGoogle Scholar
  82. 82.
    Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother. 2011;60(3):319–26. doi: 10.1007/s00262-010-0968-0.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13(1):84–8. doi: 10.1038/nm1517.PubMedCrossRefGoogle Scholar
  84. 84.
    Crane CA, Panner A, Murray JC, Wilson SP, Xu H, Chen L, et al. PI(3) kinase is associated with a mechanism of immunoresistance in breast and prostate cancer. Oncogene. 2009;28(2):306–12. doi: 10.1038/onc.2008.384.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Schreiber TH, Deyev VV, Rosenblatt JD, Podack ER. Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination. Cancer Res. 2009;69(5):2026–33. doi: 10.1158/0008-5472.CAN-08-3706.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Schreiber TH, Wolf D, Bodero M, Podack E. Tumor antigen specific iTreg accumulate in the tumor microenvironment and suppress therapeutic vaccination. Oncoimmunology. 2012;1(5):642–8. doi: 10.4161/onci.20298.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Schreiber TH, Raez L, Rosenblatt JD, Podack ER. Tumor immunogenicity and responsiveness to cancer vaccine therapy: the state of the art. Semin Immunol. 2010;22(3):105–12. doi: 10.1016/j.smim.2010.02.001.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. doi: 10.1056/NEJMoa1113205.PubMedCrossRefGoogle Scholar
  89. 89.
    Russnes HG, Navin N, Hicks J, Borresen-Dale AL. Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest. 2011;121(10):3810–8. doi: 10.1172/JCI57088.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics. 1994;39(2):93–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Calderwood SK, Stevenson MA, Murshid A. Heat shock proteins, autoimmunity, and cancer treatment. Autoimmune Dis. 2012;2012:486069. doi: 10.1155/2012/486069.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem. 2012;287(19):15874–85. doi: 10.1074/jbc.M112.340588.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Todryk SM, Melcher AA, Dalgleish AG, Vile RG. Heat shock proteins refine the danger theory. Immunology. 2000;99(3):334–7.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Aguilera R, Saffie C, Tittarelli A, Gonzalez FE, Ramirez M, Reyes D, et al. Heat-shock induction of tumor-derived danger signals mediates rapid monocyte differentiation into clinically effective dendritic cells. Clin Cancer Res. 2011;17(8):2474–83. doi: 10.1158/1078-0432.CCR-10-2384.PubMedCrossRefGoogle Scholar
  95. 95.
    Li H, Zhou M, Han J, Zhu X, Dong T, Gao GF, et al. Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments. J Immunol. 2005;174(1):195–204.PubMedCrossRefGoogle Scholar
  96. 96.
    Rapp UK, Kaufmann SH. DNA vaccination with gp96-peptide fusion proteins induces protection against an intracellular bacterial pathogen. Int Immunol. 2004;16(4):597–605.PubMedCrossRefGoogle Scholar
  97. 97.
    Yan J, Liu X, Wang Y, Jiang X, Liu H, Wang M, et al. Enhancing the potency of HBV DNA vaccines using fusion genes of HBV-specific antigens and the N-terminal fragment of gp96. J Gene Med. 2007;9(2):107–21. doi: 10.1002/jgm.998.PubMedCrossRefGoogle Scholar
  98. 98.
    Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol. 2002;20:395–425. doi: 10.1146/annurev.immunol.20.100301.064801.PubMedCrossRefGoogle Scholar
  99. 99.
    Doody AD, Kovalchin JT, Mihalyo MA, Hagymasi AT, Drake CG, Adler AJ. Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol. 2004;172(10):6087–92.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Robert J, Ramanayake T, Maniero GD, Morales H, Chida AS. Phylogenetic conservation of glycoprotein 96 ability to interact with CD91 and facilitate antigen cross-presentation. J Immunol. 2008;180(5):3176–82.PubMedCrossRefGoogle Scholar
  101. 101.
    Daemi A, Bolhassani A, Rafati S, Zahedifard F, Hosseinzadeh S, Doustdari F. Different domains of glycoprotein 96 influence HPV16 E7 DNA vaccine potency via electroporation mediated delivery in tumor mice model. Immunol Lett. 2012;148(2):117–25. doi: 10.1016/j.imlet.2012.10.003.PubMedCrossRefGoogle Scholar
  102. 102.
    Mohit E, Bolhassani A, Zahedifard F, Taslimi Y, Rafati S. The contribution of NT-gp96 as an adjuvant for increasing HPV16 E7-specific immunity in C57BL/6 mouse model. Scand J Immunol. 2012;75(1):27–37. doi: 10.1111/j.1365-3083.2011.02620.x.PubMedCrossRefGoogle Scholar
  103. 103.
    Pakravan N, Hassan ZM. Comparison of adjuvant activity of N- and C-terminal domain of gp96 in a Her2-positive breast cancer model. Cell Stress Chaperones. 2011;16(4):449–57. doi: 10.1007/s12192-011-0258-6.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Pakravan N, Soleimanjahi H, Hassan ZM. GP96 C-terminal improves Her2/neu DNA vaccine. J Gene Med. 2010;12(4):345–53. doi: 10.1002/jgm.1445.PubMedCrossRefGoogle Scholar
  105. 105.
    Srivastava PK, Jaikaria NS. Methods of purification of heat shock protein-peptide complexes for use as vaccines against cancers and infectious diseases. Methods Mol Biol. 2001;156:175–86.PubMedGoogle Scholar
  106. 106.
    Gordon NF, Clark BL. The challenges of bringing autologous HSP-based vaccines to commercial reality. Methods. 2004;32(1):63–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer. 2000;88(2):232–8. doi: 10.1002/1097-0215(20001015)88:2<232:AID-IJC14>3.0.CO;2-8.PubMedCrossRefGoogle Scholar
  108. 108.
    Mazzaferro V, Coppa J, Carrabba MG, Rivoltini L, Schiavo M, Regalia E, et al. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res. 2003;9(9):3235–45.PubMedGoogle Scholar
  109. 109.
    Rivoltini L, Castelli C, Carrabba M, Mazzaferro V, Pilla L, Huber V, et al. Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol. 2003;171(7):3467–74.PubMedCrossRefGoogle Scholar
  110. 110.
    Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol. 2002;20(20):4169–80.PubMedCrossRefGoogle Scholar
  111. 111.
    Pilla L, Patuzzo R, Rivoltini L, Maio M, Pennacchioli E, Lamaj E, et al. A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients. Cancer Immunol Immunother. 2006;55(8):958–68. doi: 10.1007/s00262-005-0084-8.PubMedCrossRefGoogle Scholar
  112. 112.
    Eton O, Ross MI, East MJ, Mansfield PF, Papadopoulos N, Ellerhorst JA, et al. Autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96) in patients with metastatic melanoma. J Transl Med. 2010;8:9. doi: 10.1186/1479-5876-8-9.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Younes A. A phase II study of heat shock protein-peptide complex-96 vaccine therapy in patients with indolent non-Hodgkin’s lymphoma. Clin Lymphoma. 2003;4(3):183–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Oki Y, McLaughlin P, Fayad LE, Pro B, Mansfield PF, Clayman GL, et al. Experience with heat shock protein-peptide complex 96 vaccine therapy in patients with indolent non-Hodgkin lymphoma. Cancer. 2007;109(1):77–83. doi: 10.1002/cncr.22389.PubMedCrossRefGoogle Scholar
  115. 115.
    Maki RG, Livingston PO, Lewis JJ, Janetzki S, Klimstra D, Desantis D, et al. A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci. 2007;52(8):1964–72. doi: 10.1007/s10620-006-9205-2.PubMedCrossRefGoogle Scholar
  116. 116.
    Testori A, Richards J, Whitman E, Mann GB, Lutzky J, Camacho L, et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol. 2008;26(6):955–62. doi: 10.1200/JCO.2007.11.9941.PubMedCrossRefGoogle Scholar
  117. 117.
    Jonasch E, Wood C, Tamboli P, Pagliaro LC, Tu SM, Kim J, et al. Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings. Br J Cancer. 2008;98(8):1336–41. doi: 10.1038/sj.bjc.6604266.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI, Gorelov S, et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet. 2008;372(9633):145–54. doi: 10.1016/S0140-6736(08)60697-2.PubMedCrossRefGoogle Scholar
  119. 119.
    Crane CA, Han SJ, Ahn B, Oehlke J, Kivett V, Fedoroff A, et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res. 2013;19(1):205–14. doi: 10.1158/1078-0432.CCR-11-3358.PubMedCrossRefGoogle Scholar
  120. 120.
    De Smet C, Lurquin C, De Plaen E, Brasseur F, Zarour H, De Backer O, et al. Genes coding for melanoma antigens recognised by cytolytic T lymphocytes. Eye (Lond). 1997;11(Pt 2):243–8. doi: 10.1038/eye.1997.59.CrossRefGoogle Scholar
  121. 121.
    Riley JP, Rosenberg SA, Parkhurst MR. Identification of a new shared HLA-A2.1 restricted epitope from the melanoma antigen tyrosinase. J Immunother. 2001;24(3):212–20.CrossRefGoogle Scholar
  122. 122.
    Singhal S, Miller D, Ramalingam S, Sun SY. Gene expression profiling of non-small cell lung cancer. Lung Cancer. 2008;60(3):313–24. doi: 10.1016/j.lungcan.2008.03.007.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Liyanage UK, Goedegebuure PS, Moore TT, Viehl CT, Moo-Young TA, Larson JW, et al. Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma. J Immunother. 2006;29(4):416–24. doi: 10.1097/01.cji.0000205644.43735.4e.PubMedCrossRefGoogle Scholar
  124. 124.
    Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61.PubMedCrossRefGoogle Scholar
  125. 125.
    Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006;108(3):804–11. doi: 10.1182/blood-2006-02-002774.PubMedCrossRefGoogle Scholar
  126. 126.
    Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med. 2007;204(6):1405–16. doi: 10.1084/jem.20062363.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Genesca M, Skinner PJ, Bost KM, Lu D, Wang Y, Rourke TL, et al. Protective attenuated lentivirus immunization induces SIV-specific T cells in the genital tract of rhesus monkeys. Mucosal Immunol. 2008;1(3):219–28. doi: 10.1038/mi.2008.6.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Genesca M, Skinner PJ, Hong JJ, Li J, Lu D, McChesney MB, et al. With minimal systemic T-cell expansion, CD8+ T Cells mediate protection of rhesus macaques immunized with attenuated simian-human immunodeficiency virus SHIV89.6 from vaginal challenge with simian immunodeficiency virus. J Virol. 2008;82(22):11181–96. doi: 10.1128/JVI.01433-08.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Ramirez SR, Singh-Jasuja H, Warger T, Braedel-Ruoff S, Hilf N, Wiemann K, et al. Glycoprotein 96-activated dendritic cells induce a CD8-biased T cell response. Cell Stress Chaperones. 2005;10(3):221–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Schreiber TH, Wolf D, Bodero M, Gonzalez L, Podack ER. T cell costimulation by TNFR superfamily (TNFRSF)4 and TNFRSF25 in the context of vaccination. J Immunol. 2012;189(7):3311–8. doi: 10.4049/jimmunol.1200597.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Natasa Strbo
    • 1
  • Arlene Garcia-Soto
    • 1
    • 2
  • Taylor H. Schreiber
    • 1
  • Eckhard R. Podack
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Department of Obstetrics and GynecologyUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations