Immunologic Research

, Volume 57, Issue 1–3, pp 258–267 | Cite as

Keratinocytes produce IL-6 in response to desmoglein 1 cleavage by Staphylococcus aureus exfoliative toxin A

  • Cleo E. Rolle
  • Juan Chen
  • Irena Pastar
  • Tatiana C. P. Cardenas
  • Roberto Perez
  • Suzanne Hower
  • Franco Ferracci
  • Richard Snyder
  • Marjana Tomic-Canic
  • Lisa R. W. Plano
Immunology & Microbiology in Miami

Abstract

Many skin infections are caused by Staphylococcus aureus, a bacterial pathogen that produces virulence factors associated with these conditions such as exfoliative toxins A and B (ETA, ETB) and the leukotoxin Panton–Valentine leukocidin (PVL). Herein, we examine the potential of skin-infecting S. aureus to produce virulence factors and their impact on the local immune response. Toxin gene profiles were generated from 188 S. aureus isolated as single infecting organisms from skin lesions and demonstrated a higher potential to express ETA, ETB, and PVL than community isolates (p < 0.001). Within the study isolate group, the prevalence of genes encoding PVL was higher among methicillin-resistant S. aureus (MRSA; n = 49), while genes encoding ETs were more prevalent in methicillin-susceptible S. aureus (MSSA; n = 139). When lesion-associated white blood cell (WBC) counts were dichotomized into high- or low-WBC-count-associated bacteria, the gene for ETA was found to be associated with a low WBC count among MSSA (p = 0.001). The ETA-induced mouse model of staphylococcal scalded skin syndrome was used to investigate the link between ETA and cytokine production. Elevated IL-6 levels in the serum and increased expression of IL-6 mRNA in the skin were detected in response to ETA exposure. These findings were recapitulated in vitro using primary human keratinocytes. Thus, S. aureus may influence the local immune response via ETA cleavage of desmoglein 1 and the induction of cutaneous IL-6 expression.

Keywords

Exfoliative toxins Staphylococcus aureus IL-6 Keratinocyte Desmoglein 1 

References

  1. 1.
    Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, et al. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122(2):160–6.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Klevens RM, Morrison MA, Fridkin SK, Reingold A, Petit S, Gershman K, et al. Community-associated methicillin-resistant Staphylococcus aureus and healthcare risk factors. Emerg Infect Dis. 2006;12(12):1991–3. doi:10.3201/eid1212.060505.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298(15):1763–71. doi:10.1001/jama.298.15.1763.CrossRefPubMedGoogle Scholar
  4. 4.
    Iwatsuki K, Yamasaki O, Morizane S, Oono T. Staphylococcal cutaneous infections: invasion, evasion and aggression. J Dermatol Sci. 2006;42(3):203–14. doi:10.1016/j.jdermsci.2006.03.011.CrossRefPubMedGoogle Scholar
  5. 5.
    Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520–32. doi:10.1056/NEJM199808203390806.CrossRefPubMedGoogle Scholar
  6. 6.
    Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med. 2006;355(7):666–74. doi:10.1056/NEJMoa055356.CrossRefPubMedGoogle Scholar
  7. 7.
    Diep BA, Carleton HA, Chang RF, Sensabaugh GF, Perdreau-Remington F. Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus. J Infect Dis. 2006;193(11):1495–503. doi:10.1086/503777.CrossRefPubMedGoogle Scholar
  8. 8.
    Foster TJ. Immune evasion by staphylococci. Nat Rev Microbiol. 2005;3(12):948–58. doi:10.1038/nrmicro1289.CrossRefPubMedGoogle Scholar
  9. 9.
    Couppie P, Cribier B, Prevost G. Leukocidin from Staphylococcus aureus and cutaneous infections: an epidemiologic study. Arch Dermatol. 1994;130(9):1208–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, et al. Involvement of Panton–Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis. 1999;29(5):1128–32. doi:10.1086/313461.CrossRefPubMedGoogle Scholar
  11. 11.
    Yamasaki O, Kaneko J, Morizane S, Akiyama H, Arata J, Narita S, et al. The association between Staphylococcus aureus strains carrying Panton–Valentine leukocidin genes and the development of deep-seated follicular infection. Clin Infect Dis. 2005;40(3):381–5. doi:10.1086/427290.CrossRefPubMedGoogle Scholar
  12. 12.
    Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, Benito Y, et al. Staphylococcus aureus Panton–Valentine leukocidin causes necrotizing pneumonia. Science. 2007;315(5815):1130–3. doi:10.1126/science.1137165.CrossRefPubMedGoogle Scholar
  13. 13.
    Kawabata A, Ichiyama S, Iinuma Y, Hasegawa Y, Ohta M, Shimokata K. Exfoliative toxin detection using reversed passive latex agglutination: clinical and epidemiologic applications. J Clin Microbiol. 1997;35(8):1984–7.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Amagai M, Matsuyoshi N, Wang ZH, Andl C, Stanley JR. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat Med. 2000;6(11):1275–7. doi:10.1038/81385.CrossRefPubMedGoogle Scholar
  15. 15.
    Harmon RM, Simpson CL, Johnson JL, Koetsier JL, Dubash AD, Najor NA, et al. Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation. J Clin Invest. 2013;123(4):1556–70. doi:10.1172/JCI65220.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Plano LR, Adkins B, Woischnik M, Ewing R, Collins CM. Toxin levels in serum correlate with the development of staphylococcal scalded skin syndrome in a murine model. Infect Immun. 2001;69(8):5193–7. doi:10.1128/IAI.69.8.5193-5197.2001.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Mertz PM, Cardenas TC, Snyder RV, Kinney MA, Davis SC, Plano LR. Staphylococcus aureus virulence factors associated with infected skin lesions: influence on the local immune response. Arch Dermatol. 2007;143(10):1259–63. doi:10.1001/archderm.143.10.1259.CrossRefPubMedGoogle Scholar
  18. 18.
    Oliveira DC, de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(7):2155–61.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol. 1999;37(11):3556–63.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Harmsen D, Claus H, Witte W, Rothganger J, Turnwald D, Vogel U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003;41(12):5442–8.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Hower S, Phillips MC, Brodsky M, Dameron A, Tamargo MA, Salazar NC, et al. Clonally related methicillin-resistant Staphylococcus aureus isolated from short-finned pilot whales (Globicephala macrorhynchus), human volunteers, and a bayfront cetacean rehabilitation facility. Microb Ecol. 2013;65(4):1024–38. doi:10.1007/s00248-013-0178-3.CrossRefPubMedGoogle Scholar
  22. 22.
    Plano LR, Shibata T, Garza AC, Kish J, Fleisher JM, Sinigalliano CD, et al. Human-associated methicillin-resistant Staphylococcus aureus from a subtropical recreational marine beach. Microb Ecol. 2013;65(4):1039–51. doi:10.1007/s00248-013-0216-1.CrossRefPubMedGoogle Scholar
  23. 23.
    Plano LR, Gutman DM, Woischnik M, Collins CM. Recombinant Staphylococcus aureus exfoliative toxins are not bacterial superantigens. Infect Immun. 2000;68(5):3048–52.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Randolph RK, Simon M. Characterization of retinol metabolism in cultured human epidermal keratinocytes. J Biol Chem. 1993;268(13):9198–205.PubMedGoogle Scholar
  25. 25.
    Jho SH, Vouthounis C, Lee B, Stojadinovic O, Im MJ, Brem H, et al. The book of opposites: the role of the nuclear receptor co-regulators in the suppression of epidermal genes by retinoic acid and thyroid hormone receptors. J Invest Dermatol. 2005;124(5):1034–43. doi:10.1111/j.0022-202X.2005.23691.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Pastar I, Stojadinovic O, Krzyzanowska A, Barrientos S, Stuelten C, Zimmerman K, et al. Attenuation of the transforming growth factor beta-signaling pathway in chronic venous ulcers. Mol Med. 2010;16(3–4):92–101. doi:10.2119/molmed.2009.00149.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.Google Scholar
  28. 28.
    McDonald RR, Golding GR, Irvine J, Graham MR, Tyler S, Mulvey MR et al. Draft Genome Sequence of Methicillin-Susceptible Staphylococcus aureus Strain 06BA18369, a Pathogen Associated with Skin and Soft Tissue Infections in Northern Saskatchewan, Canada. Genome Announc. 2013;1(3). doi:10.1128/genomeA.00389-13.
  29. 29.
    Ansel J, Perry P, Brown J, Damm D, Phan T, Hart C, et al. Cytokine modulation of keratinocyte cytokines. J Invest Dermatol. 1990;94(6 Suppl):101S–7S.CrossRefPubMedGoogle Scholar
  30. 30.
    Plano LR. Staphylococcus aureus exfoliative toxins: how they cause disease. J Invest Dermatol. 2004;122(5):1070–7. doi:10.1111/j.1523-1747.2004.22144.x.CrossRefPubMedGoogle Scholar
  31. 31.
    Olaru F, Jensen LE. Staphylococcus aureus stimulates neutrophil targeting chemokine expression in keratinocytes through an autocrine IL-1alpha signaling loop. J Invest Dermatol. 2010;130(7):1866–76. doi:10.1038/jid.2010.37.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest. 1998;101(2):311–20. doi:10.1172/JCI1368.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Dube PH, Handley SA, Lewis J, Miller VL. Protective role of interleukin-6 during Yersinia enterocolitica infection is mediated through the modulation of inflammatory cytokines. Infect Immun. 2004;72(6):3561–70. doi:10.1128/IAI.72.6.3561-3570.2004.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Goodman WA, Levine AD, Massari JV, Sugiyama H, McCormick TS, Cooper KD. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J Immunol. 2009;183(5):3170–6. doi:10.4049/jimmunol.0803721.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity. 2001;14(6):705–14.CrossRefPubMedGoogle Scholar
  36. 36.
    McLoughlin RM, Hurst SM, Nowell MA, Harris DA, Horiuchi S, Morgan LW, et al. Differential regulation of neutrophil-activating chemokines by IL-6 and its soluble receptor isoforms. J Immunol. 2004;172(9):5676–83.CrossRefPubMedGoogle Scholar
  37. 37.
    Pastar I, Stojadinovic O, Tomic-Canic M. Role of keratinocytes in healing of chronic wounds. Surg Technol Int. 2008;17:105–12.PubMedGoogle Scholar
  38. 38.
    Pajulo OT, Pulkki KJ, Alanen MS, Reunanen MS, Lertola KK, Mattila-Vuori AI, et al. Correlation between interleukin-6 and matrix metalloproteinase-9 in early wound healing in children. Wound Repair Regen. 1999;7(6):453–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Berkowitz P, Hu P, Liu Z, Diaz LA, Enghild JJ, Chua MP, et al. Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J Biol Chem. 2005;280(25):23778–84. doi:10.1074/jbc.M501365200.CrossRefPubMedGoogle Scholar
  40. 40.
    Chernyavsky AI, Arredondo J, Kitajima Y, Sato-Nagai M, Grando SA. Desmoglein versus non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of pemphigus vulgaris antigens. J Biol Chem. 2007;282(18):13804–12. doi:10.1074/jbc.M611365200.CrossRefPubMedGoogle Scholar
  41. 41.
    Dusek RL, Godsel LM, Green KJ. Discriminating roles of desmosomal cadherins: beyond desmosomal adhesion. J Dermatol Sci. 2007;45(1):7–21. doi:10.1016/j.jdermsci.2006.10.006.CrossRefPubMedGoogle Scholar
  42. 42.
    Dancer SJ, Noble WC. Nasal, axillary, and perineal carriage of Staphylococcus aureus among women: identification of strains producing epidermolytic toxin. J Clin Pathol. 1991;44(8):681–4.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Larsen HD, Aarestrup FM, Jensen NE. Geographical variation in the presence of genes encoding superantigenic exotoxins and beta-hemolysin among Staphylococcus aureus isolated from bovine mastitis in Europe and USA. Vet Microbiol. 2002;85(1):61–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Prevost G, Couppie P, Prevost P, Gayet S, Petiau P, Cribier B, et al. Epidemiological data on Staphylococcus aureus strains producing synergohymenotropic toxins. J Med Microbiol. 1995;42(4):237–45.CrossRefPubMedGoogle Scholar
  45. 45.
    Holmes A, Ganner M, McGuane S, Pitt TL, Cookson BD, Kearns AM. Staphylococcus aureus isolates carrying Panton–Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. J Clin Microbiol. 2005;43(5):2384–90. doi:10.1128/JCM.43.5.2384-2390.2005.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Kuehnert MJ, Kruszon-Moran D, Hill HA, McQuillan G, McAllister SK, Fosheim G, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis. 2006;193(2):172–9. doi:10.1086/499632.CrossRefPubMedGoogle Scholar
  47. 47.
    Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L, Mackie K, et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun. 2002;70(9):4987–96.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Becker K, Friedrich AW, Lubritz G, Weilert M, Peters G, Von Eiff C. Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J Clin Microbiol. 2003;41(4):1434–9.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med. 2004;199(5):687–95. doi:10.1084/jem.20031636.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cleo E. Rolle
    • 1
  • Juan Chen
    • 2
  • Irena Pastar
    • 3
  • Tatiana C. P. Cardenas
    • 1
  • Roberto Perez
    • 3
  • Suzanne Hower
    • 1
    • 2
  • Franco Ferracci
    • 1
  • Richard Snyder
    • 2
  • Marjana Tomic-Canic
    • 3
  • Lisa R. W. Plano
    • 1
    • 2
    • 3
  1. 1.Department of Microbiology and Immunology, Leonard M. Miller School of MedicineUniversity of MiamiMiamiUSA
  2. 2.Department of Pediatrics, Leonard M. Miller School of MedicineUniversity of MiamiMiamiUSA
  3. 3.Department of Dermatology and Cutaneous Surgery, Leonard M. Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations