Immunologic Research

, Volume 57, Issue 1–3, pp 99–105

CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors

  • Stephania Libreros
  • Ramon Garcia-Areas
  • Vijaya Iragavarapu-Charyulu
Immunology & Microbiology in Miami


Elevated serum levels of a glycoprotein known as chitinase-3-like protein 1 (CHI3L1) have been correlated with poor prognosis and shorter survival of patients with cancer and inflammatory diseases. The biological and physiological functions of CHI3L1 in cancer have not yet been completely elucidated. In this review, we describe the role of CHI3L1 in inducing pro-inflammatory/pro-tumorigenic and angiogenic factors that could promote tumor growth and metastasis.


Chitinase-3-like-1 protein Angiogenesis Inflammation Metastasis Chitin 


  1. 1.
    Hakala BE, White C, Recklies AD. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem. 1993;268(34):25803–10.PubMedGoogle Scholar
  2. 2.
    Morrison BW, Leder P. neu and ras initiate murine mammary tumors that share genetic markers generally absent in c-myc and int-2-initiated tumors. Oncogene. 1994;9(12):3417–26.PubMedGoogle Scholar
  3. 3.
    Shackelton LM, Mann DM, Millis AJ. Identification of a 38-kDa heparin-binding glycoprotein (gp38 k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J Biol Chem. 1995;270(22):13076–83.CrossRefPubMedGoogle Scholar
  4. 4.
    Rehli M, Krause SW, Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. 1997;43(2):221–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Renkema GH, et al. Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur J Biochem. 1998;251(1–2):504–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Fusetti F, et al. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J Biol Chem. 2003;278(39):37753–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Shibata Y, et al. Oral administration of chitin down-regulates serum IgE levels and lung eosinophilia in the allergic mouse. J Immunol. 2000;164(3):1314–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Boot RG, et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001;276(9):6770–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Araujo AC, Souto-Padron T, de Souza W. Cytochemical localization of carbohydrate residues in microfilariae of Wuchereria bancrofti and Brugia malayi. J Histochem Cytochem. 1993;41(4):571–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Debono M, Gordee RS. Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol. 1994;48:471–97.CrossRefPubMedGoogle Scholar
  11. 11.
    Fuhrman JA, Piessens WF. Chitin synthesis and sheath morphogenesis in Brugia malayi microfilariae. Mol Biochem Parasitol. 1985;17(1):93–104.CrossRefPubMedGoogle Scholar
  12. 12.
    Neville AC, Parry DA, Woodhead-Galloway J. The chitin crystallite in arthropod cuticle. J Cell Sci. 1976;21(1):73–82.PubMedGoogle Scholar
  13. 13.
    Shahabuddin M, Vinetz JM. Chitinases of human parasites and their implications as antiparasitic targets. EXS. 1999;87:223–34.PubMedGoogle Scholar
  14. 14.
    Coffman FD. Chitinase 3-Like-1 (CHI3L1): a putative disease marker at the interface of proteomics and glycomics. Crit Rev Clin Lab Sci. 2008;45(6):531–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Houston DR, et al. Structure and ligand-induced conformational change of the 39-kDa glycoprotein from human articular chondrocytes. J Biol Chem. 2003;278(32):30206–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Bigg HF, et al. The mammalian chitinase-like lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation. J Biol Chem. 2006;281(30):21082–95.CrossRefPubMedGoogle Scholar
  17. 17.
    Nyirkos P, Golds EE. Human synovial cells secrete a 39 kDa protein similar to a bovine mammary protein expressed during the non-lactating period. Biochem J. 1990;269(1):265–8.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Kzhyshkowska J, Gratchev A, Goerdt S. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomark Insights. 2007;2:128–46.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Johansen JS, et al. High serum YKL-40 levels in patients with primary breast cancer is related to short recurrence free survival. Breast Cancer Res Treat. 2003;80(1):15–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Cintin C, et al. Serum YKL-40 and colorectal cancer. Br J Cancer. 1999;79(9–10):1494–9.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Johansen JS. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull. 2006;53(2):172–209.PubMedGoogle Scholar
  22. 22.
    Johansen JS, et al. High serum YKL-40 level in patients with small cell lung cancer is related to early death. Lung Cancer. 2004;46(3):333–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Hogdall EV, et al. High plasma YKL-40 level in patients with ovarian cancer stage III is related to shorter survival. Oncol Rep. 2003;10(5):1535–8.PubMedGoogle Scholar
  24. 24.
    Dupont J, et al. Early detection and prognosis of ovarian cancer using serum YKL-40. J Clin Oncol. 2004;22(16):3330–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Brasso K, et al. Prognostic value of PINP, bone alkaline phosphatase, CTX-I, and YKL-40 in patients with metastatic prostate carcinoma. Prostate. 2006;66(5):503–13.Google Scholar
  26. 26.
    Diefenbach CS, et al. Preoperative serum YKL-40 is a marker for detection and prognosis of endometrial cancer. Gynecol Oncol. 2007;104(2):435–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Schmidt H, et al. Elevated serum level of YKL-40 is an independent prognostic factor for poor survival in patients with metastatic melanoma. Cancer. 2006;106(5):1130–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Biggar RJ, et al. Serum YKL-40 and interleukin 6 levels in Hodgkin lymphoma. Clin Cancer Res. 2008;14(21):6974–8.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Bergmann OJ, et al. High serum concentration of YKL-40 is associated with short survival in patients with acute myeloid leukemia. Clin Cancer Res. 2005;11(24 Pt 1):8644–52.CrossRefPubMedGoogle Scholar
  30. 30.
    Pelloski CE, et al. YKL-40 expression is associated with poorer response to radiation and shorter overall survival in glioblastoma. Clin Cancer Res. 2005;11(9):3326–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Mitsuhashi A, et al. Serum YKL-40 as a marker for cervical adenocarcinoma. Ann Oncol. 2009;20(1):71–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Mizoguchi A, Mizoguchi E. Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol. 2008;43(1):1–17.CrossRefPubMedGoogle Scholar
  33. 33.
    He CH, et al. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor alpha2. Cell Rep. 2013;4(4):830–41.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Libreros S, et al. Induction of proinflammatory mediators by CHI3L1 is reduced by chitin treatment: Decreased tumor metastasis in a breast cancer model. Int J Cancer. 2011;131(2):377–86.Google Scholar
  35. 35.
    Recklies AD, White C, Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem J. 2002;365(Pt 1):119–26.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Johansen JS, Jensen HS, Price PA. A new biochemical marker for joint injury. Analysis of YKL-40 in serum and synovial fluid. Br J Rheumatol. 1993;32(11):949–55.CrossRefPubMedGoogle Scholar
  37. 37.
    Scully S, et al. Inhibitory activity of YKL-40 in mammary epithelial cell differentiation and polarization induced by lactogenic hormones: a role in mammary tissue involution. PLoS ONE. 2011;6(10):e25819.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Malinda KM, et al. Gp38 k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp Cell Res. 1999;250(1):168–73.CrossRefPubMedGoogle Scholar
  39. 39.
    De Ceuninck F, et al. YKL-40 (cartilage gp-39) induces proliferative events in cultured chondrocytes and synoviocytes and increases glycosaminoglycan synthesis in chondrocytes. Biochem Biophys Res Commun. 2001;285(4):926–31.CrossRefPubMedGoogle Scholar
  40. 40.
    Shao R, et al. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene. 2009;28(50):4456–68.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Kawada M, et al. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene. 2012;31(26):3111–23.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Jensen BV, Johansen JS, Price PA. High levels of serum HER-2/neu and YKL-40 independently reflect aggressiveness of metastatic breast cancer. Clin Cancer Res. 2003;9(12):4423–34.PubMedGoogle Scholar
  43. 43.
    Hottinger AF, et al. YKL-40 and MMP-9 as serum markers for patients with primary central nervous system lymphoma. Ann Neurol. 2011;70(1):163–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Brasso K, Iversen P. Prostatic cancer 2006–status and new challenges. The Danish society of urology. Ugeskr Laeger. 2006;168(12):1243.PubMedGoogle Scholar
  45. 45.
    Shao R, et al. Breast cancer expression of YKL-40 correlates with tumour grade, poor differentiation, and other cancer markers. Br J Cancer. 2011;105(8):1203–9.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Kang EJ, et al. YKL-40 expression could be a poor prognostic marker in the breast cancer tissue. Tumour Biol. 2013. doi:10.1007/s13277-013-1036-0.
  47. 47.
    Johansen JS, et al. Serum YKL-40: a new potential marker of prognosis and location of metastases of patients with recurrent breast cancer. Eur J Cancer. 1995;31A(9):1437–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Coskun U, et al. Locally advanced breast carcinoma treated with neoadjuvant chemotherapy: are the changes in serum levels of YKL-40, MMP-2 and MMP-9 correlated with tumor response? Neoplasma. 2007;54(4):348–52.PubMedGoogle Scholar
  49. 49.
    Faibish M, et al. A YKL-40-neutralizing antibody blocks tumor angiogenesis and progression: a potential therapeutic agent in cancers. Mol Cancer Ther. 2011;10(5):742–51.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Francescone RA, et al. Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J Biol Chem. 2011;286(17):15332–43.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Krause SW, et al. Differential screening identifies genetic markers of monocyte to macrophage maturation. J Leukoc Biol. 1996;60(4):540–5.PubMedGoogle Scholar
  52. 52.
    Nigro JM, et al. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res. 2005;65(5):1678–86.CrossRefPubMedGoogle Scholar
  53. 53.
    Lee CG, et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Exp Med. 2009;206(5):1149–66.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Mizoguchi E. Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology. 2006;130(2):398–411.CrossRefPubMedGoogle Scholar
  55. 55.
    Pearson G, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22(2):153–83.PubMedGoogle Scholar
  56. 56.
    Johansen JS, et al. Serum YKL-40 concentrations in patients with rheumatoid arthritis: relation to disease activity. Rheumatology (Oxford). 1999;38(7):618–26.CrossRefGoogle Scholar
  57. 57.
    Vind I, et al. Serum YKL-40, a potential new marker of disease activity in patients with inflammatory bowel disease. Scand J Gastroenterol. 2003;38(6):599–605.CrossRefPubMedGoogle Scholar
  58. 58.
    Johansen JS, et al. Increased serum YKL-40 in patients with pulmonary sarcoidosis–a potential marker of disease activity? Respir Med. 2005;99(4):396–402.CrossRefPubMedGoogle Scholar
  59. 59.
    Sakazaki Y, et al. Overexpression of chitinase 3-like 1/YKL-40 in lung-specific IL-18-transgenic mice, smokers and COPD. PLoS One. 2011;6(9):e24177.Google Scholar
  60. 60.
    Elias JA, et al. Chitinases and chitinase-like proteins in T(H)2 inflammation and asthma. J Allergy Clin Immunol. 2005;116(3):497–500.CrossRefPubMedGoogle Scholar
  61. 61.
    Rathcke CN, Vestergaard H. YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis. Inflamm Res. 2006;55(6):221–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Johansen JS, et al. Plasma YKL-40: a new potential marker of fibrosis in patients with alcoholic cirrhosis? Scand J Gastroenterol. 1997;32(6):582–90.CrossRefPubMedGoogle Scholar
  63. 63.
    Johansen JS, et al. Serum YKL-40 is increased in patients with hepatic fibrosis. J Hepatol. 2000;32(6):911–20.CrossRefPubMedGoogle Scholar
  64. 64.
    Bonneh-Barkay D, et al. YKL-40, a marker of simian immunodeficiency virus encephalitis, modulates the biological activity of basic fibroblast growth factor. Am J Pathol. 2008;173(1):130–43.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Chupp GL, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med. 2007;357(20):2016–27.CrossRefPubMedGoogle Scholar
  66. 66.
    Ober C, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008;358(16):1682–91.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Johansen JS, et al. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev. 2006;15(2):194–202.CrossRefPubMedGoogle Scholar
  68. 68.
    Eurich K, et al. Potential role of chitinase 3-like-1 in inflammation-associated carcinogenic changes of epithelial cells. World J Gastroenterol. 2009;15(42):5249–59.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Tang H, et al. YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-kappaB pathways, causing bronchial smooth muscle proliferation and migration. J Immunol. 2013;190(1):438–46.CrossRefPubMedGoogle Scholar
  71. 71.
    Qin W, et al. Increased expression of the inflammatory protein YKL-40 in precancers of the breast. Int J Cancer. 2007;121(7):1536–42.CrossRefPubMedGoogle Scholar
  72. 72.
    Kawada M, et al. Chitinase 3-like-1 enhances bacterial adhesion to colonic epithelial cells through the interaction with bacterial chitin-binding protein. Lab Invest. 2008;88(8):883–95.CrossRefPubMedGoogle Scholar
  73. 73.
    Owen JL, et al. Expression of the inflammatory chemokines CCL2, CCL5 and CXCL2 and the receptors CCR1-3 and CXCR2 in T lymphocytes from mammary tumor-bearing mice. Cell Immunol. 2011;270(2):172–82.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16(3):133–44.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Letuve S, et al. YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages. J Immunol. 2008;181(7):5167–73.CrossRefPubMedGoogle Scholar
  76. 76.
    Aguilera B, et al. Transglycosidase activity of chitotriosidase: improved enzymatic assay for the human macrophage chitinase. J Biol Chem. 2003;278(42):40911–6.CrossRefPubMedGoogle Scholar
  77. 77.
    Saidi A, et al. Experimental anti-angiogenesis causes upregulation of genes associated with poor survival in glioblastoma. Int J Cancer. 2008;122(10):2187–98.CrossRefPubMedGoogle Scholar
  78. 78.
    Hughes K, et al. Conditional deletion of Stat3 in mammary epithelium impairs the acute phase response and modulates immune cell numbers during post-lactational regression. J Pathol. 2012;227(1):106–17.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Werb Z, et al. Matrix-degrading proteases and angiogenesis during development and tumor formation. Apmis. 1999;107(1):11–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Coussens LM, et al. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387–92.CrossRefPubMedGoogle Scholar
  82. 82.
    Owen JL, et al. Up-regulation of matrix metalloproteinase-9 in T lymphocytes of mammary tumor bearers: role of vascular endothelial growth factor. J Immunol. 2003;171(8):4340–51.CrossRefPubMedGoogle Scholar
  83. 83.
    Shibata Y, Metzger WJ, Myrvik QN. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. J Immunol. 1997;159(5):2462–7.PubMedGoogle Scholar
  84. 84.
    Nagatani K, et al. Chitin microparticles for the control of intestinal inflammation. Inflamm Bowel Dis. 2012;18(9):1698–710.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stephania Libreros
    • 1
  • Ramon Garcia-Areas
    • 1
  • Vijaya Iragavarapu-Charyulu
    • 1
  1. 1.Department of Biomedical Sciences, Charles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations