Immunologic Research

, Volume 57, Issue 1–3, pp 159–165 | Cite as

Molecular studies and therapeutic targeting of Kaposi’s sarcoma herpesvirus (KSHV/HHV-8) oncogenesis

  • Enrique A. Mesri
  • Lucas E. Cavallin
  • Brittany M. Ashlock
  • Howard J. Leung
  • Qi Ma
  • Pascal J. Goldschmidt-Clermont
Immunology & Microbiology in Miami


Kaposi’s sarcoma herpesvirus or human herpesvirus-8 (KSHV/HHV-8) is the etiological agent of Kaposi’s sarcoma (KS), an AIDS-defining angioproliferative neoplasm that continues to be a major global health problem and, of primary effusion lymphoma (PEL), a rare incurable B-cell lymphoma. This review describes the research from our laboratory and its collaborators to uncover molecular mechanisms of viral oncogenesis in order to develop new pathogenesis-based therapies to the KSHV-induced AIDS malignancies KS and PEL. They include the discovery of the viral angiogenic oncogene G protein-coupled receptor (vGPCR), the development of mouse models of KSHV and oxidative stress-induced KS, the identification of the role of Rac1-induced ROS in viral oncogenesis of KS and the development of novel therapeutic approaches able to target both latent and lytic oncogenic KSHV infection.


AIDS-associated malignancies Targeted therapies Antivirals Human herpesvirus-8 Angiogenesis Animal models of cancer 



The research described in this review was funded through NIH/PHS Grants to E.A.M. AI39192, CA75918 and CA136387, by NCI/OHAM supplements to the Miami CFAR Grant 5P30AI073961, by American Cancer Society RPG-99-207-01-MBC and by the Sylvester Comprehensive Cancer Center.


  1. 1.
    Boshoff C, Chang Y. Kaposi’s sarcoma-associated herpesvirus: a new DNA tumor virus. Annu Rev Med. 2001;52:453–70. doi: 10.1146/ Scholar
  2. 2.
    Mesri EA, Cesarman E, Boshoff C. Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer. 2010;10(10):707–19. doi: 10.1038/nrc2888.CrossRefPubMedGoogle Scholar
  3. 3.
    Casper C. The increasing burden of HIV-associated malignancies in resource-limited regions. Annu Rev Med. 2011;62:157–70. doi: 10.1146/annurev-med-050409-103711.CrossRefPubMedGoogle Scholar
  4. 4.
    Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood. 1995;86(4):1276–80.PubMedGoogle Scholar
  5. 5.
    Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Medicine. 1995;332(18):1186–91. doi: 10.1056/NEJM199505043321802.CrossRefGoogle Scholar
  6. 6.
    Cesarman E, Mesri EA. Virus-associated lymphomas. Curr Opin Oncol. 1999;11(5):322–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 1994;266(5192):1865–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Arvanitakis L, Mesri EA, Nador RG, Said JW, Asch AS, Knowles DM, et al. Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein–Barr virus. Blood. 1996;88(7):2648–54.PubMedGoogle Scholar
  9. 9.
    Mesri EA, Cesarman E, Arvanitakis L, Rafii S, Moore MA, Posnett DN, et al. Human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus is a new transmissible virus that infects B cells. J Exp Med. 1996;183(5):2385–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA. 1996;93(25):14862–7.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Investig. 2010;120(4):939–49. doi: 10.1172/JCI40567.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature. 1997;385(6614):347–50. doi: 10.1038/385347a0.CrossRefPubMedGoogle Scholar
  13. 13.
    Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, et al. G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature. 1998;391(6662):86–9. doi: 10.1038/34193.CrossRefPubMedGoogle Scholar
  14. 14.
    Munshi N, Ganju RK, Avraham S, Mesri EA, Groopman JE. Kaposi’s sarcoma-associated herpesvirus-encoded G protein-coupled receptor activation of c-jun amino-terminal kinase/stress-activated protein kinase and lyn kinase is mediated by related adhesion focal tyrosine kinase/proline-rich tyrosine kinase 2. J Biol Chem. 1999;274(45):31863–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, et al. The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res. 2000;60(17):4873–80.PubMedGoogle Scholar
  16. 16.
    Cesarman E, Mesri EA, Gershengorn MC. Viral G protein-coupled receptor and Kaposi’s sarcoma: a model of paracrine neoplasia? J Exp Med. 2000;191(3):417–22.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27. doi: 10.1038/nrc2542.CrossRefPubMedGoogle Scholar
  18. 18.
    Bais C, Van Geelen A, Eroles P, Mutlu A, Chiozzini C, Dias S, et al. Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell. 2003;3(2):131–43.CrossRefPubMedGoogle Scholar
  19. 19.
    Yang TY, Chen SC, Leach MW, Manfra D, Homey B, Wiekowski M, et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med. 2000;191(3):445–54.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Jensen KK, Manfra DJ, Grisotto MG, Martin AP, Vassileva G, Kelley K, et al. The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi’s sarcoma. J Immunol. 2005;174(6):3686–94.CrossRefPubMedGoogle Scholar
  21. 21.
    Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y, et al. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell. 2003;3(1):23–36.CrossRefPubMedGoogle Scholar
  22. 22.
    Montaner S, Sodhi A, Servitja JM, Ramsdell AK, Barac A, Sawai ET, et al. The small GTPase Rac1 links the Kaposi sarcoma-associated herpesvirus vGPCR to cytokine secretion and paracrine neoplasia. Blood. 2004;104(9):2903–11. doi: 10.1182/blood-2003-12-4436.CrossRefPubMedGoogle Scholar
  23. 23.
    Montaner S, Sodhi A, Ramsdell AK, Martin D, Hu J, Sawai ET, et al. The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor as a therapeutic target for the treatment of Kaposi’s sarcoma. Cancer Res. 2006;66(1):168–74. doi: 10.1158/0008-5472.CAN-05-1026.CrossRefPubMedGoogle Scholar
  24. 24.
    Sodhi A, Chaisuparat R, Hu J, Ramsdell AK, Manning BD, Sausville EA, et al. The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell. 2006;10(2):133–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med. 2005;352(13):1317–23. doi: 10.1056/NEJMoa042831.CrossRefPubMedGoogle Scholar
  26. 26.
    Yarchoan R. Key role for a viral lytic gene in Kaposi’s sarcoma. N Engl J Med. 2006;355(13):1383–5. doi: 10.1056/NEJMcibr063911.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhou FC, Zhang YJ, Deng JH, Wang XP, Pan HY, Hettler E, et al. Efficient infection by a recombinant Kaposi’s sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J Virol. 2002;76(12):6185–96.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Browning PJ, Sechler JM, Kaplan M, Washington RH, Gendelman R, Yarchoan R, et al. Identification and culture of Kaposi’s sarcoma-like spindle cells from the peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls. Blood. 1994;84(8):2711–20.PubMedGoogle Scholar
  29. 29.
    Mutlu AD, Cavallin LE, Vincent L, Chiozzini C, Eroles P, Duran EM, et al. In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi’s sarcoma. Cancer Cell. 2007;11(3):245–58. doi: 10.1016/j.ccr.2007.01.015.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997;275(5306):1649–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Ma Q, Cavallin LE, Yan B, Zhu S, Duran EM, Wang H, et al. Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi’s sarcoma. Proc Natl Acad Sci USA. 2009;106(21):8683–8. doi: 10.1073/pnas.0812688106.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Ma Q, Cavallin LE, Leung HJ, Chiozzini C, Goldschmidt-Clermont PJ, Mesri EA. A role for virally induced reactive oxygen species in Kaposi’s sarcoma herpesvirus tumorigenesis. Antioxid Redox Signal. 2013;18(1):80–90. doi: 10.1089/ars 2012.4584.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Koon HB, Bubley GJ, Pantanowitz L, Masiello D, Smith B, Crosby K, et al. Imatinib-induced regression of AIDS-related Kaposi’s sarcoma. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(5):982–9. doi: 10.1200/JCO.2005.06.079.CrossRefGoogle Scholar
  34. 34.
    Cesarman E, Mesri EA. Pathogenesis of viral lymphomas. Cancer Treat Res. 2006;131:49–88.CrossRefPubMedGoogle Scholar
  35. 35.
    Sarosiek KA, Cavallin LE, Bhatt S, Toomey NL, Natkunam Y, Blasini W, et al. Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proc Natl Acad Sci USA. 2010;107(29):13069–74.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Bhatt S, Ashlock BM, Toomey NL, Diaz LA, Mesri EA, Lossos IS, et al. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Investig. 2013;123(6):2616–28. doi: 10.1172/JCI64503.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M, et al. Under normoxia, 2-deoxy-d-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther. 2007;6(11):3049–58. doi: 10.1158/1535-7163.MCT-07-0310.CrossRefPubMedGoogle Scholar
  38. 38.
    Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, et al. A phase I dose-escalation trial of 2-deoxy-d-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2013;71(2):523–30. doi: 10.1007/s00280-012-2045-1.CrossRefPubMedGoogle Scholar
  39. 39.
    Isler JA, Skalet AH, Alwine JC. Human cytomegalovirus infection activates and regulates the unfolded protein response. J Virol. 2005;79(11):6890–9. doi: 10.1128/JVI.79.11.6890- 6899.2005.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Leung HJ, Duran EM, Kurtoglu M, Andreansky S, Lampidis TJ, Mesri EA. Activation of the unfolded protein response by 2-deoxy-d-glucose inhibits Kaposi’s sarcoma-associated herpesvirus replication and gene expression. Antimicrob Agents Chemother. 2012;56(11):5794–803. doi: 10.1128/AAC.01126-12.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Enrique A. Mesri
    • 1
  • Lucas E. Cavallin
    • 1
  • Brittany M. Ashlock
    • 1
  • Howard J. Leung
    • 1
  • Qi Ma
    • 1
  • Pascal J. Goldschmidt-Clermont
    • 1
  1. 1.Department of Microbiology and Immunology, Graduate Program in Microbiology and Immunology, Miami Center for AIDS Research and Viral Oncology Program, Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations