Advertisement

Immunologic Research

, Volume 57, Issue 1–3, pp 172–184 | Cite as

Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly

  • Paolo Serafini
Immunology & Microbiology in Miami

Abstract

Myeloid derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors, are recognized as a key element in tumor escape and progression. The importance of MDSCs in human malignancies has been demonstrated in recent years, and new approaches targeting their suppressive/tolerogenic action are currently being tested in both preclinical model and clinical trials. However, emerging evidence suggests that MDSCs may play a prominent role as regulator of the physiologic, the chronic, and the pathologic immune responses. This review will focus on the biology of MDSC in light of these new findings and the possible role of this myeloid population not only in the progression of the tumor but also in its initiation.

Keywords

Myeloid derived suppressor cells MDSCs subsets Physiological immune response Chronic inflammation Carcinogenesis Tumor progression 

Notes

Acknowledgments

This work is supported by the Flight Attendant Medical Research institute, by the DOD-BCRP-idea award and by the Bankhead Coley Cancer Research Program. The author would like to thank Donald T. Weed and Alessia Zoso for the critical reading of this manuscript.

References

  1. 1.
    Strober S. Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol. 1984;2:219–37.PubMedCrossRefGoogle Scholar
  2. 2.
    Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, et al. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood. 2000;96(12):3838–46.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Young MR, Kolesiak K, Wright MA, Gabrilovich DI. Chemoattraction of femoral CD34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clin Exp Metastasis. 1999;17(10):881–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166(1):678–89.PubMedCrossRefGoogle Scholar
  5. 5.
    Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V, Mandruzzato S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother. 2012;35(2):107–15. doi: 10.1097/CJI.0b013e318242169f.PubMedCrossRefGoogle Scholar
  6. 6.
    Vollbrecht T, Stirner R, Tufman A, Roider J, Huber RM, Bogner JR, et al. Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS. 2012;26(12):F31–7. doi: 10.1097/QAD.0b013e328354b43f.PubMedCrossRefGoogle Scholar
  7. 7.
    Fast DJ, Shannon BJ, Herriott MJ, Kennedy MJ, Rummage JA, Leu RW. Staphylococcal exotoxins stimulate nitric oxide-dependent murine macrophage tumoricidal activity. Infect Immun. 1991;59(9):2987–93.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Fu YX, Watson G, Jimenez JJ, Wang Y, Lopez DM. Expansion of immunoregulatory macrophages by granulocyte–macrophage colony-stimulating factor derived from a murine mammary tumor. Cancer Res. 1990;50:227–34.PubMedGoogle Scholar
  9. 9.
    Melani C, Chiodoni C, Forni G, Colombo MP. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood. 2003;102(6):2138–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Kusmartsev S, Gabrilovich DI. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol. 2003;74(2):186–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Apolloni E, Bronte V, Mazzoni A, Serafini P, Cabrelle A, Segal DM, et al. Immortalized myeloid suppressor cells trigger apoptosis in antigen-activated T lymphocytes. J Immunol. 2000;165(12):6723–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181:5791–802.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell—suppressive activity. Blood. 2008;111(8):4233–44. doi: 10.1182/blood-2007-07-099226.PubMedCrossRefGoogle Scholar
  14. 14.
    Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol. 2010;40(1):22–35. doi: 10.1002/eji.200939903.PubMedCrossRefGoogle Scholar
  15. 15.
    Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010;22(2):238–44. doi: 10.1016/j.coi.2010.01.021.PubMedCrossRefGoogle Scholar
  16. 16.
    Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–92. doi: 10.1146/annurev.immunol.021908.132557.PubMedCrossRefGoogle Scholar
  17. 17.
    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. doi: 10.1038/nri2506.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN, et al. IL-1β regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol. 2010;40(12):3347–57. doi: 10.1002/eji.201041037.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, et al. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2008;14(24):8270–8. doi: 10.1158/1078-0432.CCR-08-0165.PubMedCrossRefGoogle Scholar
  20. 20.
    Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009;69(4):1553–60. doi: 10.1158/0008-5472.CAN-08-1921.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 2001;61(12):4756–60.PubMedGoogle Scholar
  22. 22.
    Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009;182(9):5693–701. doi: 10.4049/jimmunol.0900092.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol. 2013. doi: 10.1038/ni.2526.
  24. 24.
    Eruslanov E, Neuberger M, Daurkin I, Perrin GQ, Algood C, Dahm P, et al. Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer. 2012;130(5):1109–19. doi: 10.1002/ijc.26123.PubMedCrossRefGoogle Scholar
  25. 25.
    Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907–16.PubMedCrossRefGoogle Scholar
  27. 27.
    Baniyash M. TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol. 2004;4(9):675–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 2004;64(16):5839–49.PubMedCrossRefGoogle Scholar
  29. 29.
    de Jonge WJ, Hallemeesch MM, Kwikkers KL, Ruijter JM, de Gier-de Vries C, van Roon MA, et al. Overexpression of arginase I in enterocytes of transgenic mice elicits a selective arginine deficiency and affects skin, muscle, and lymphoid development. Am J Clin Nutr. 2002;76(1):128–40.PubMedGoogle Scholar
  30. 30.
    Raber P, Ochoa AC, Rodriguez PC. Metabolism of l-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Invest. 2012;41(6–7):614–34. doi: 10.3109/08820139.2012.680634.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Rodriguez PC, Quiceno DG, Ochoa AC. l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 2007;109(4):1568–73. doi: 10.1182/blood-2006-06-031856.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Rodriguez PC, Hernandez CP, Morrow K, Sierra R, Zabaleta J, Wyczechowska DD, et al. l-arginine deprivation regulates cyclin D3 mRNA stability in human T cells by controlling HuR expression. J Immunol. 2010;185(9):5198–204. doi: 10.4049/jimmunol.1001224.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750–61. doi: 10.1038/nri3088.PubMedCrossRefGoogle Scholar
  34. 34.
    Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6(7):521–34. doi: 10.1038/nrc1910.PubMedCrossRefGoogle Scholar
  35. 35.
    Bronte V, Zanovello P. Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol. 2005;5(8):641–54. doi: 10.1038/nri1668.PubMedCrossRefGoogle Scholar
  36. 36.
    Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol. 2002;168(2):689–95.PubMedCrossRefGoogle Scholar
  37. 37.
    Fischer TA, Palmetshofer A, Gambaryan S, Butt E, Jassoy C, Walter U, et al. Activation of cGMP-dependent protein kinase Iβ inhibits interleukin 2 release and proliferation of T cell receptor-stimulated human peripheral T cells. J Biol Chem. 2001;276(8):5967–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Duhe RJ, Evans GA, Erwin RA, Kirken RA, Cox GW, Farrar WL. Nitric oxide and thiol redox regulation of Janus kinase activity. Proc Natl Acad Sci USA. 1998;95(1):126–31.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol. 1998;160(12):5729–34.PubMedGoogle Scholar
  40. 40.
    Macphail SE, Gibney CA, Brooks BM, Booth CG, Flanagan BF, Coleman JW. Nitric oxide regulation of human peripheral blood mononuclear cells: critical time dependence and selectivity for cytokine versus chemokine expression. J Immunol. 2003;171(9):4809–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, et al. Fas-induced caspase denitrosylation. Science. 1999;284(5414):651–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Currie GA, Gyure L, Cifuentes L. Microenvironmental arginine depletion by macrophages in vivo. Br J Cancer. 1979;39(6):613–20.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006;116(10):2777–90. doi: 10.1172/JCI28828.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Brys L, Beschin A, Raes G, Ghassabeh GH, Noel W, Brandt J, et al. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol. 2005;174(10):6095–104.PubMedCrossRefGoogle Scholar
  45. 45.
    Bronte V, Kasic T, Gri G, Gallana K, Borsellino G, Marigo I, et al. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med. 2005;201(8):1257–68. doi: 10.1084/jem.20042028.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Bruch-Gerharz D, Schnorr O, Suschek C, Beck KF, Pfeilschifter J, Ruzicka T, et al. Arginase 1 overexpression in psoriasis: limitation of inducible nitric oxide synthase activity as a molecular mechanism for keratinocyte hyperproliferation. Am J Pathol. 2003;162(1):203–11.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. l-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003;24(6):302–6.PubMedCrossRefGoogle Scholar
  48. 48.
    De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, et al. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA. 2005;102(11):4185–90. doi: 10.1073/pnas.0409783102.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006;203(12):2691–702. doi: 10.1084/jem.20061104.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Kusmartsev S, Gabrilovich DI. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol. 2005;174(8):4880–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Xia Y, Roman LJ, Masters BS, Zweier JL. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem. 1998;273(35):22635–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA. 1997;94(13):6954–8.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol. 2003;170(1):270–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Santhanam L, Lim HK, Miriel V, Brown T, Patel M, Balanson S, et al. Inducible NO synthase dependent S-nitrosylation and activation of arginase1 contribute to age-related endothelial dysfunction. Circ Res. 2007;101(7):692–702. doi: 10.1161/CIRCRESAHA.107.157727.PubMedCrossRefGoogle Scholar
  55. 55.
    Gmunder H, Eck HP, Droge W. Low membrane transport activity for cystine in resting and mitogenically stimulated human lymphocyte preparations and human T cell clones. Eur J Biochem. 1991;201(1):113–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Bannai S. Transport of cystine and cysteine in mammalian cells. Biochim Biophys Acta. 1984;779(3):289–306.PubMedCrossRefGoogle Scholar
  57. 57.
    Iwata S, Hori T, Sato N, Ueda-Taniguchi Y, Yamabe T, Nakamura H, et al. Thiol-mediated redox regulation of lymphocyte proliferation. Possible involvement of adult T cell leukemia-derived factor and glutathione in transferrin receptor expression. J Immunol. 1994;152(12):5633–42.PubMedGoogle Scholar
  58. 58.
    Gmunder H, Eck HP, Benninghoff B, Roth S, Droge W. Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. Cell Immunol. 1990;129(1):32–46.PubMedCrossRefGoogle Scholar
  59. 59.
    Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77. doi: 10.1158/0008-5472.CAN-09-2587.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci USA. 1996;93(23):13119–24.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Kono K, Ressing ME, Brandt RM, Melief CJ, Potkul RK, Andersson B, et al. Decreased expression of signal-transducing zeta chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin Cancer Res. 1996;2(11):1825–8.PubMedGoogle Scholar
  62. 62.
    Kono K, Salazar-Onfray F, Petersson M, Hansson J, Masucci G, Wasserman K, et al. Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol. 1996;26(6):1308–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol. 2012;91(1):167–81. doi: 10.1189/jlb.0311177.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol. 2011;89(2):311–7. doi: 10.1189/jlb.0310162.PubMedCrossRefGoogle Scholar
  65. 65.
    Lu T, Gabrilovich DI. Molecular pathways: tumor-infiltrating myeloid cells and reactive oxygen species in regulation of tumor microenvironment. Clin Cancer Res. 2012;18(18):4877–82. doi: 10.1158/1078-0432.CCR-11-2939.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids. 2003;25(3–4):295–311. doi: 10.1007/s00726-003-0018-8.PubMedCrossRefGoogle Scholar
  67. 67.
    Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition of antigen is a mechanism of CD8(+) T cell tolerance in cancer. Nat Med. 2007;13(7):828–35.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 2011;208(10):1949–62. doi: 10.1084/jem.20101956.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest. 2011;121(10):4015–29. doi: 10.1172/JCI45862.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68(13):5439–49. doi: 10.1158/0008-5472.CAN-07-6621.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, et al. Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 2010;70(1):99–108. doi: 10.1158/0008-5472.CAN-09-1882.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    MacDonald KP, Rowe V, Clouston AD, Welply JK, Kuns RD, Ferrara JL, et al. Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J Immunol. 2005;174(4):1841–50.PubMedCrossRefGoogle Scholar
  73. 73.
    Adeegbe D, Serafini P, Bronte V, Zoso A, Ricordi C, Inverardi L. In vivo induction of myeloid suppressor cells and CD4(+) Foxp3(+) T regulatory cells prolongs skin allograft survival in mice. Cell Transplant. 2011;20(6):941–54. doi: 10.3727/096368910X540621.PubMedCrossRefGoogle Scholar
  74. 74.
    Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, et al. Tumor cells convert immature myeloid dendritic cells into TGF-β—secreting cells inducing CD4+ CD25+ regulatory T cell proliferation. J Exp Med. 2005;202(7):919–29.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, et al. Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31. doi: 10.1158/0008-5472.CAN-05-1299.PubMedCrossRefGoogle Scholar
  76. 76.
    Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+) CD25(+) Foxp3(+) T cells. Gastroenterology. 2008;135(1):234–43. doi: 10.1053/j.gastro.2008.03.020.PubMedCrossRefGoogle Scholar
  77. 77.
    Hoechst B, Gamrekelashvili J, Manns MP, Greten TF, Korangy F. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011;117(24):6532–41. doi: 10.1182/blood-2010-11-317321.PubMedCrossRefGoogle Scholar
  78. 78.
    Cauley LS, Miller EE, Yen M, Swain SL. Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-γ. J Immunol. 2000;165(11):6056–66.PubMedCrossRefGoogle Scholar
  79. 79.
    Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006;16(1):53–65. doi: 10.1016/j.semcancer.2005.07.005.PubMedCrossRefGoogle Scholar
  80. 80.
    Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 2004;64(17):6337–43. doi: 10.1158/0008-5472.CAN-04-0757.PubMedCrossRefGoogle Scholar
  81. 81.
    Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol. 2007;18(2):226–32.Google Scholar
  82. 82.
    Bronte V, Tsung K, Rao JB, Chen PW, Wang M, Rosenberg SA, et al. IL-2 enhances the function of recombinant poxvirus-based vaccines in the treatment of established pulmonary metastases. J Immunol. 1995;154(10):5282–92.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, et al. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol. 1998;161(10):5313–20.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM, et al. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med. 2011;17(3–4):281–92. doi: 10.2119/molmed.2010.00178.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Scumpia PO, Kelly-Scumpia KM, Delano MJ, Weinstein JS, Cuenca AG, Al-Quran S, et al. Cutting edge: bacterial infection induces hematopoietic stem and progenitor cell expansion in the absence of TLR signaling. J Immunol. 2010;184(5):2247–51. doi: 10.4049/jimmunol.0903652.PubMedCrossRefGoogle Scholar
  86. 86.
    Murphey ED, Lin CY, McGuire RW, Toliver-Kinsky T, Herndon DN, Sherwood ER. Diminished bacterial clearance is associated with decreased IL-12 and interferon-gamma production but a sustained proinflammatory response in a murine model of postseptic immunosuppression. Shock. 2004;21(5):415–25.PubMedCrossRefGoogle Scholar
  87. 87.
    Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol. 2006;176(4):2085–94.PubMedCrossRefGoogle Scholar
  88. 88.
    Sander LE, Sackett SD, Dierssen U, Beraza N, Linke RP, Muller M, et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J Exp Med. 2010;207(7):1453–64. doi: 10.1084/jem.20091474.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, et al. Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 2008;14(5):408–19. doi: 10.1016/j.ccr.2008.10.011.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Zhao X, Rong L, Zhao X, Li X, Liu X, Deng J, et al. TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Investig. 2012;122(11):4094–104. doi: 10.1172/JCI64115.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol. 2006;176(1):284–90.PubMedCrossRefGoogle Scholar
  92. 92.
    Tacke RS, Lee HC, Goh C, Courtney J, Polyak SJ, Rosen HR, et al. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology. 2012;55(2):343–53. doi: 10.1002/hep.24700.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Cai W, Qin A, Guo P, Yan D, Hu F, Yang Q, et al. Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients. J Clin Immunol. 2013;33(4):798–808. doi: 10.1007/s10875-012-9861-2.PubMedCrossRefGoogle Scholar
  94. 94.
    Qin A, Cai W, Pan T, Wu K, Yang Q, Wang N, et al. Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol. 2013;87(3):1477–90. doi: 10.1128/JVI.01759-12.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Liu C, Zhang C, Lu H, Cai J, Wang Z, Chen J, et al. Poly(I:C) induce bone marrow precursor cells into myeloid-derived suppressor cells. Mol Cell Biochem. 2011;358(1–2):317–23. doi: 10.1007/s11010-011-0982-3.PubMedCrossRefGoogle Scholar
  96. 96.
    Fortin C, Huang X, Yang Y. NK cell response to vaccinia virus is regulated by myeloid-derived suppressor cells. J Immunol. 2012;189(4):1843–9. doi: 10.4049/jimmunol.1200584.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB. Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun. 2008;31(4):354–61. doi: 10.1016/j.jaut.2008.08.006.PubMedCrossRefGoogle Scholar
  98. 98.
    Vered M, Furth E, Shalev Y, Dayan D. Inflammatory cells of immunosuppressive phenotypes in oral lichen planus have a proinflammatory pattern of expression and are associated with clinical parameters. Clin Oral Investig. 2013;17(5):1365–73. doi: 10.1007/s00784-012-0814-1.PubMedCrossRefGoogle Scholar
  99. 99.
    Cripps JG, Wang J, Maria A, Blumenthal I, Gorham JD. Type 1 T helper cells induce the accumulation of myeloid-derived suppressor cells in the inflamed Tgfb1 knockout mouse liver. Hepatology. 2010;52(4):1350–9. doi: 10.1002/hep.23841.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Bowen JL, Olson JK. Innate immune CD11b+ Gr-1+ cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease. J Immunol. 2009;183(11):6971–80. doi: 10.4049/jimmunol.0902193.PubMedCrossRefGoogle Scholar
  101. 101.
    Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM et al. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology. 2008;135(3):871–81, 81 e1–e5. doi: 10.1053/j.gastro.2008.06.032.Google Scholar
  102. 102.
    Jiao Z, Hua S, Wang W, Wang H, Gao J, Wang X. Increased circulating myeloid-derived suppressor cells correlated negatively with Th17 cells in patients with rheumatoid arthritis. Scand J Rheumatol. 2013;42(2):85–90. doi: 10.3109/03009742.2012.716450.PubMedCrossRefGoogle Scholar
  103. 103.
    Scrimini S, Pons J, Agusti A, Soriano JB, Cosio BG, Torrecilla JA et al. Differential effects of smoking and COPD upon circulating myeloid derived suppressor cells. Respiratory medicine. 2013. doi: 10.1016/j.rmed.2013.08.002.
  104. 104.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99. doi: 10.1016/j.cell.2010.01.025.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol. 2012;22(1):33–40. doi: 10.1016/j.semcancer.2011.12.005.PubMedCrossRefGoogle Scholar
  106. 106.
    Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Investig. 2008;118(7):2516–25. doi: 10.1172/JCI35073.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Migliorati CA. Periodontal diseases and cancer. Lancet Oncol. 2008;9(6):510–2. doi: 10.1016/S1470-2045(08)70138-4.PubMedCrossRefGoogle Scholar
  108. 108.
    Feller L, Altini M, Lemmer J. Inflammation in the context of oral cancer. Oral Oncol. 2013;49(9):887–92. doi: 10.1016/j.oraloncology.2013.07.003.PubMedCrossRefGoogle Scholar
  109. 109.
    Cosio MG, Saetta M. Evasion of COPD in smokers: at what price? Eur Respir J. 2012;39(6):1298–303. doi: 10.1183/09031936.00135711.PubMedCrossRefGoogle Scholar
  110. 110.
    Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140(6):871–82. doi: 10.1016/j.cell.2010.02.029.PubMedCrossRefGoogle Scholar
  111. 111.
    Balamayooran G, Batra S, Cai S, Mei J, Worthen GS, Penn AL, et al. Role of CXCL5 in leukocyte recruitment to the lungs during secondhand smoke exposure. Am J Respir Cell Mol Biol. 2012;47(1):104–11. doi: 10.1165/rcmb.2011-0260OC.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233–45. doi: 10.1038/nrc3477.PubMedCrossRefGoogle Scholar
  113. 113.
    Loukides S, Bakakos P, Kostikas K. Oxidative stress in patients with COPD. Curr Drug Targets. 2011;12(4):469–77.PubMedCrossRefGoogle Scholar
  114. 114.
    Kostikas K, Papatheodorou G, Psathakis K, Panagou P, Loukides S. Oxidative stress in expired breath condensate of patients with COPD. Chest. 2003;124(4):1373–80.PubMedCrossRefGoogle Scholar
  115. 115.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. doi: 10.1038/nri3175.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Nagaraj S, Gabrilovich DI. Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res. 2008;68(8):2561–3. doi: 10.1158/0008-5472.CAN-07-6229.PubMedCrossRefGoogle Scholar
  117. 117.
    Chioda M, Peranzoni E, Desantis G, Papalini F, Falisi E, Solito S, et al. Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Rev. 2011;30(1):27–43. doi: 10.1007/s10555-011-9268-1.PubMedCrossRefGoogle Scholar
  118. 118.
    Bronte V, Serafini P, Apolloni E, Zanovello P. Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother. 2001;24(6):431–46.PubMedCrossRefGoogle Scholar
  119. 119.
    Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222:162–79.PubMedCrossRefGoogle Scholar
  120. 120.
    Horiguchi S, Petersson M, Nakazawa T, Kanda M, Zea AH, Ochoa AC, et al. Primary chemically induced tumors induce profound immunosuppression concomitant with apoptosis and alterations in signal transduction in T cells and NK cells. Cancer Res. 1999;59(12):2950–6.PubMedGoogle Scholar
  121. 121.
    Talmadge JE, Hood KC, Zobel LC, Shafer LR, Coles M, Toth B. Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol. 2007;7(2):140–51.PubMedCrossRefGoogle Scholar
  122. 122.
    Liu Y, Van Ginderachter JA, Brys L, De Baetselier P, Raes G, Geldhof AB. Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J Immunol. 2003;170(10):5064–74.PubMedCrossRefGoogle Scholar
  123. 123.
    Schlecker E, Stojanovic A, Eisen C, Quack C, Falk CS, Umansky V, et al. Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J Immunol. 2012;189(12):5602–11. doi: 10.4049/jimmunol.1201018.PubMedCrossRefGoogle Scholar
  124. 124.
    Umansky V, Sevko A. Melanoma-induced immunosuppression and its neutralization. Semin Cancer Biol. 2012;22(4):319–26. doi: 10.1016/j.semcancer.2012.02.003.PubMedCrossRefGoogle Scholar
  125. 125.
    Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Investig. 2007;117(5):1155–66. doi: 10.1172/JCI31422.PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Erez N, Coussens LM. Leukocytes as paracrine regulators of metastasis and determinants of organ-specific colonization. Int J Cancer. 2011;128(11):2536–44. doi: 10.1002/ijc.26032.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8. doi: 10.1038/nrc1256.PubMedCrossRefGoogle Scholar
  128. 128.
    Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85. doi: 10.1056/NEJMoa0905680.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Zhang J, Patel L, Pienta KJ. CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev. 2010;21(1):41–8. doi: 10.1016/j.cytogfr.2009.11.009.PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med. 2001;193(6):727–40.PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16(2):91–102. doi: 10.1016/j.ccr.2009.06.018.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P. Aptamer-mediated blockade of IL4Rα triggers apoptosis of MDSCs and limits tumor progression. Cancer Research online first. 2012. doi: 10.1158/0008-5472.can-11-2772.
  133. 133.
    Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Pahler JC, Tazzyman S, Erez N, Chen YY, Murdoch C, Nozawa H, et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 2008;10(4):329–40.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Xiang M, Gu Y, Zhao F, Lu H, Chen S, Yin L. Mast cell tryptase promotes breast cancer migration and invasion. Oncol Rep. 2010;23(3):615–9.PubMedGoogle Scholar
  136. 136.
    Mohamed MM, Cavallo-Medved D, Rudy D, Anbalagan A, Moin K, Sloane BF. Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes. Cell Physiol Biochem. 2010;25(2–3):315–24. doi: 10.1159/000276564.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPβ transcription factor. Immunity. 2010;32(6):790–802. doi: 10.1016/j.immuni.2010.05.010.PubMedCrossRefGoogle Scholar
  138. 138.
    Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A, et al. Gr-1+ CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res. 2010;70(15):6139–49. doi: 10.1158/0008-5472.CAN-10-0706.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222–5. doi: 10.1038/nature10138.PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE. 2009;4(8):e6562. doi: 10.1371/journal.pone.0006562.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Kaler P, Galea V, Augenlicht L, Klampfer L. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1β-dependent stabilization of Snail in tumor cells. PLoS ONE. 2010;5(7):e11700. doi: 10.1371/journal.pone.0011700.PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, et al. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer. 1997;74(1):69–74.PubMedCrossRefGoogle Scholar
  143. 143.
    Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood. 2011;118(8):2254–65. doi: 10.1182/blood-2010-12-325753.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58(1):49–59. doi: 10.1007/s00262-008-0523-4.PubMedCentralPubMedCrossRefGoogle Scholar
  145. 145.
    Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65(8):3044–8. doi: 10.1158/0008-5472.CAN-04-4505.PubMedGoogle Scholar
  146. 146.
    Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50(3):799–807. doi: 10.1002/hep.23054.PubMedCrossRefGoogle Scholar
  147. 147.
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012. doi: 10.1038/nm.2883.
  148. 148.
    Ugel S, Peranzoni E, Desantis G, Chioda M, Walter S, Weinschenk T, et al. Immune tolerance to tumor antigens occurs in a specialized environment of the spleen. Cell Reports. 2012;2(3):628–39. doi: 10.1016/j.celrep.2012.08.006.PubMedCrossRefGoogle Scholar
  149. 149.
    Youn JI, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40(11):2969–75. doi: 10.1002/eji.201040895.PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Daftarian P, Kaifer AE, Li W, Blomberg BB, Frasca D, Roth F, et al. Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res. 2011;71(24):7452–62. doi: 10.1158/0008-5472.CAN-11-1766.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyUniversity of Miami, Miller School of MedicineMiamiUSA

Personalised recommendations