Immunologic Research

, Volume 57, Issue 1–3, pp 237–245 | Cite as

The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses

  • Gregory V. PlanoEmail author
  • Kurt Schesser
Immunology & Microbiology in Miami


Yersinia pestis, the etiologic agent of plague, utilizes a type III secretion system (T3SS) to subvert the defenses of its mammalian hosts. T3SSs are complex nanomachines that allow bacterial pathogens to directly inject effector proteins into eukaryotic cells. The Y. pestis T3SS is not expressed during transit through the flea vector, but T3SS gene expression is rapidly thermoinduced upon entry into a mammalian host. Assembly of the T3S apparatus is a highly coordinated process that requires the homo- and hetero-oligomerization over 20 Yersinia secretion (Ysc) proteins, several assembly intermediates and the T3S process to complete the assembly of the rod and external needle structures. The activation of effector secretion is controlled by the YopN/TyeA/SycN/YscB complex, YscF and LcrG in response to extracellular calcium and/or contact with a eukaryotic cell. Cell contact triggers the T3S process including the secretion and assembly of a pore-forming translocon complex that facilitates the translocation of effector proteins, termed Yersinia outer proteins (Yops), across the eukaryotic membrane. Within the host cell, the Yop effector proteins function to inhibit bacterial phagocytosis and to suppress the production of pro-inflammatory cytokines.


Secretion Virulence Apparatus Effector Yops 



We apologize to those whose work we could not cover due to space constraints. The work from the Plano laboratory cited and discussed in this review is funded by the National Institutes of Health/National Institute of Allergy and Infectious Diseases Grant AI101823 to GVP. KS was supported by AI53459 from the same institution.


  1. 1.
    Cohn SK Jr. Epidemiology of the Black Death and successive waves of plague. Med History. 2008;27:74–100.Google Scholar
  2. 2.
    Butler T. Plague gives surprises in the first decade of the 21st century in the United States and worldwide. Am J Trop Med Hyg. 2013;. doi: 10.4269/ajtmh.13-0191.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Perry RD, Fetherston JD. Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev. 1997;10(1):35–66.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Cornelis GR. Molecular and cell biology aspects of plague. PNAS. 2000;97(16):8778–83.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Galan JE, Wolf-Watz H. Protein delivery into eukaryotic cells by type III secretion machines. Nature. 2006;444(7119):567–73. doi: 10.1038/nature05272.CrossRefPubMedGoogle Scholar
  6. 6.
    Perry RD, Straley SC, Fetherston JD, Rose DJ, Gregor J, Blattner FR. DNA sequencing and analysis of the low-Ca2 + -response plasmid pCD1 of Yersinia pestis KIM5. Infect Immun. 1998;66(10):4611–23.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Galindo CL, Rosenzweig JA, Kirtley ML, Chopra AK. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in Human Yersiniosis. J Path. 2011;2011:182051. doi: 10.4061/2011/182051.
  8. 8.
    Yother J, Chamness TW, Goguen JD. Temperature-controlled plasmid regulon associated with low calcium response in Yersinia pestis. J Bacteriol. 1986;165(2):443–7.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Hoe NP, Goguen JD. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol. 1993;175(24):7901–9.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Bohme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, et al. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Path. 2012;8(2):e1002518. doi: 10.1371/journal.ppat.1002518.CrossRefGoogle Scholar
  11. 11.
    Cornelis GR, Sluiters C, Delor I, Geib D, Kaniga K. Lambert de Rouvroit C et al. ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol Microbiol. 1991;5(5):1023–34.CrossRefPubMedGoogle Scholar
  12. 12.
    de la Cruz F, Carmona M, Juarez A. The Hha protein from Escherichia coli is highly homologous to the YmoA protein from Yersinia enterocolitica. Mol Microbiol. 1992;6(22):3451–2.CrossRefPubMedGoogle Scholar
  13. 13.
    Nieto JM, Madrid C, Miquelay E, Parra JL, Rodriguez S, Juarez A. Evidence for direct protein–protein interaction between members of the enterobacterial Hha/YmoA and H-NS families of proteins. J Bacteriol. 2002;184(3):629–35.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Carmona M, Balsalobre C, Munoa F, Mourino M, Jubete Y, De la Cruz F, et al. Escherichia coli hha mutants, DNA supercoiling and expression of the haemolysin genes from the recombinant plasmid pANN202-312. Mol Microbiol. 1993;9(5):1011–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Jackson MW, Silva-Herzog E, Plano GV. The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol. 2004;54(5):1364–78. doi: 10.1111/j.1365-2958.2004.04353.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Yahr TL, Wolfgang MC. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol. 2006;62(3):631–40. doi: 10.1111/j.1365-2958.2006.05412.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Brutinel ED, Vakulskas CA, Brady KM, Yahr TL. Characterization of ExsA and of ExsA-dependent promoters required for expression of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol. 2008;68(3):657–71. doi: 10.1111/j.1365-2958.2008.06179.x.CrossRefPubMedGoogle Scholar
  18. 18.
    King JM, Schesser Bartra S, Plano GV, Yahr TL. ExsA and LcrF recognize a similar consensus-binding site but differences in their oligomeric state influence interactions with promoter DNA. J Bacteriol. 2013. doi: 10.1128/JB.00990-13.
  19. 19.
    Diepold A, Wiesand U, Cornelis GR. The assembly of the export apparatus (YscR, S, T, U, V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol Microbiol. 2011;82(2):502–14. doi: 10.1111/j.1365-2958.2011.07830.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Plano GV, Barve SS, Straley SC. LcrD, a membrane-bound regulator of the Yersinia pestis low-calcium response. J Bacteriol. 1991;173(22):7293–303.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Abrusci P, Vergara-Irigaray M, Johnson S, Beeby MD, Hendrixson DR, Roversi P, et al. Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol. 2013;20(1):99–104. doi: 10.1038/nsmb.2452.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Diepold A, Amstutz M, Abel S, Sorg I, Jenal U, Cornelis GR. Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J. 2010;29(11):1928–40. doi: 10.1038/emboj.2010.84.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Burghout P, Beckers F, de Wit E, van Boxtel R, Cornelis GR, Tommassen J, et al. Role of the pilot protein YscW in the biogenesis of the YscC secretin in Yersinia enterocolitica. J Bacteriol. 2004;186(16):5366–75. doi: 10.1128/JB.186.16.5366- 5375.2004.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Ross JA, Plano GV. A C-terminal region of Yersinia pestis YscD binds the outer membrane secretin YscC. J Bacteriol. 2011;193(9):2276–89. doi: 10.1128/JB.01137-10.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Jackson MW, Plano GV. Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol Lett. 2000;186(1):85–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Lara-Tejero M, Kato J, Wagner S, Liu X, Galan JE. A sorting platform determines the order of protein secretion in bacterial type III systems. Science New York, NY. 2011;331(6021):1188-91. doi: 10.1126/science.1201476.Google Scholar
  27. 27.
    Stone CB, Johnson DL, Bulir DC, Gilchrist JD, Mahony JB. Characterization of the putative type III secretion ATPase CdsN (Cpn0707) of Chlamydophila pneumoniae. J Bacteriol. 2008;190(20):6580–8. doi: 10.1128/JB.00761-08.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Barison N, Lambers J, Hurwitz R, Kolbe M. Interaction of MxiG with the cytosolic complex of the type III secretion system controls Shigella virulence. FASEB J. 2012;26(4):1717–26. doi: 10.1096/fj.11-197160.CrossRefPubMedGoogle Scholar
  29. 29.
    Gamez A, Mukerjea R, Alayyoubi M, Ghassemian M, Ghosh P. Structure and interactions of the cytoplasmic domain of the Yersinia type III secretion protein YscD. J Bacteriol. 2012;194(21):5949–58. doi: 10.1128/JB.00513-12.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Diepold A, Wiesand U, Amstutz M, Cornelis GR. Assembly of the Yersinia injectisome: the missing pieces. Mol Microbiol. 2012;85(5):878–92. doi: 10.1111/j.1365-2958.2012.08146.x.CrossRefPubMedGoogle Scholar
  31. 31.
    Day JB, Plano GV. The Yersinia pestis YscY protein directly binds YscX, a secreted component of the type III secretion machinery. J Bacteriol. 2000;182(7):1834–43.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Iriarte M, Cornelis GR. Identification of SycN, YscX, and YscY, three new elements of the Yersinia yop virulon. J Bacteriol. 1999;181(2):675–80.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Wood SE, Jin J, Lloyd SA. YscP and YscU switch the substrate specificity of the Yersinia type III secretion system by regulating export of the inner rod protein YscI. J Bacteriol. 2008;190(12):4252–62. doi: 10.1128/JB.00328-08.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Hoiczyk E, Blobel G. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. PNAS. 2001;98(8):4669–74. doi: 10.1073/pnas.071065798.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Edqvist PJ, Olsson J, Lavander M, Sundberg L, Forsberg A, Wolf-Watz H, et al. YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J Bacteriol. 2003;185(7):2259–66.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Payne PL, Straley SC. YscP of Yersinia pestis is a secreted component of the Yop secretion system. J Bacteriol. 1999;181(9):2852–62.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Journet L, Agrain C, Broz P, Cornelis GR. The needle length of bacterial injectisomes is determined by a molecular ruler. Science (New York, NY). 2003;302(5651):1757–60. doi: 10.1126/science.1091422.
  38. 38.
    Agrain C, Callebaut I, Journet L, Sorg I, Paroz C, Mota LJ, et al. Characterization of a Type III secretion substrate specificity switch (T3S4) domain in YscP from Yersinia enterocolitica. Mol Microbiol. 2005;56(1):54–67. doi: 10.1111/j.1365-2958.2005.04534.x.CrossRefPubMedGoogle Scholar
  39. 39.
    Mueller CA, Broz P, Muller SA, Ringler P, Erne-Brand F, Sorg I et al. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science (New York, NY). 2005;310(5748):674-6. doi: 10.1126/science.1118476.
  40. 40.
    Broz P, Mueller CA, Muller SA, Philippsen A, Sorg I, Engel A, et al. Function and molecular architecture of the Yersinia injectisome tip complex. Mol Microbiol. 2007;65(5):1311–20. doi: 10.1111/j.1365-2958.2007.05871.x.CrossRefPubMedGoogle Scholar
  41. 41.
    Dewoody RS, Merritt PM, Marketon MM. Regulation of the Yersinia type III secretion system: traffic control. Front Cell Infect Microbiol. 2013;3:4. doi: 10.3389/fcimb.2013.00004.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Straley SC, Plano GV, Skrzypek E, Haddix PL, Fields KA. Regulation by Ca2 + in the Yersinia low-Ca2 + response. Mol Microbiol. 1993;8(6):1005–10.CrossRefPubMedGoogle Scholar
  43. 43.
    Day JB, Ferracci F, Plano GV. Translocation of YopE and YopN into eukaryotic cells by Yersinia pestis yopN, tyeA, sycN, yscB and lcrG deletion mutants measured using a phosphorylatable peptide tag and phosphospecific antibodies. Mol Microbiol. 2003;47(3):807–23.CrossRefPubMedGoogle Scholar
  44. 44.
    Skryzpek E, Straley SC. LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J Bacteriol. 1993;175(11):3520–8.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Matson JS, Nilles ML. LcrG-LcrV interaction is required for control of Yops secretion in Yersinia pestis. J Bacteriol. 2001;183(17):5082–91.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Yother J, Goguen JD. Isolation and characterization of Ca2 + -blind mutants of Yersinia pestis. J Bacteriol. 1985;164(2):704–11.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Day JB, Plano GV. A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis. Mol Microbiol. 1998;30(4):777–88.CrossRefPubMedGoogle Scholar
  48. 48.
    Iriarte M, Sory MP, Boland A, Boyd AP, Mills SD, Lambermont I, et al. TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors. EMBO J. 1998;17(7):1907–18. doi: 10.1093/emboj/17.7.1907.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Cheng LW, Kay O, Schneewind O. Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J Bacteriol. 2001;183(18):5293–301.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Joseph SS, Plano GV. Identification of TyeA residues required to interact with YopN and to regulate Yop secretion. Adv Exp Med Biol. 2007;603:235–45. doi: 10.1007/978-0-387-72124-8_21.CrossRefPubMedGoogle Scholar
  51. 51.
    Ferracci F, Schubot FD, Waugh DS, Plano GV. Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol Microbiol. 2005;57(4):970–87. doi: 10.1111/j.1365-2958.2005.04738.x.CrossRefPubMedGoogle Scholar
  52. 52.
    Reina LD, O’Bryant DM, Matson JS, Nilles ML. LcrG secretion is not required for blocking of Yops secretion in Yersinia pestis. BMC Microbiol. 2008;8:29. doi: 10.1186/1471-2180-8-29.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Kenjale R, Wilson J, Zenk SF, Saurya S, Picking WL, Picking WD, et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem. 2005;280(52):42929–37. doi: 10.1074/jbc.M508377200.CrossRefPubMedGoogle Scholar
  54. 54.
    Torruellas J, Jackson MW, Pennock JW, Plano GV. The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol Microbiol. 2005;57(6):1719–33. doi: 10.1111/j.1365-2958.2005.04790.x.CrossRefPubMedGoogle Scholar
  55. 55.
    Hayes CS, Aoki SK, Low DA. Bacterial contact-dependent delivery systems. Ann Rev Genetics. 2010;44:71–90. doi: 10.1146/annurev.genet.42.110807.091449.CrossRefGoogle Scholar
  56. 56.
    Mattei PJ, Faudry E, Job V, Izore T, Attree I, Dessen A. Membrane targeting and pore formation by the type III secretion system translocon. FEBS J. 2011;278(3):414–26. doi: 10.1111/j.1742-4658.2010.07974.x.CrossRefPubMedGoogle Scholar
  57. 57.
    Marenne MN, Journet L, Mota LJ, Cornelis GR. Genetic analysis of the formation of the Ysc-Yop translocation pore in macrophages by Yersinia enterocolitica: role of LcrV. YscF YopN Microb Path. 2003;35(6):243–58.CrossRefGoogle Scholar
  58. 58.
    Hakansson S, Schesser K, Persson C, Galyov EE, Rosqvist R, Homble F, et al. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J. 1996;15(21):5812–23.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Rosqvist R, Persson C, Hakansson S, Nordfeldt R, Wolf-Watz H. Translocation of the Yersinia YopE and YopH virulence proteins into target cells is mediated by YopB and YopD. Contrib Microbiol Immunol. 1995;13:230–4.PubMedGoogle Scholar
  60. 60.
    Hakansson S, Bergman T, Vanooteghem JC, Cornelis G, Wolf-Watz H. YopB and YopD constitute a novel class of Yersinia Yop proteins. Infect Immun. 1993;61(1):71–80.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Montagner C, Arquint C, Cornelis GR. Translocators YopB and YopD from Yersinia enterocolitica form a multimeric integral membrane complex in eukaryotic cell membranes. J Bacteriol. 2011;193(24):6923–8. doi: 10.1128/JB.05555-11.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Marketon MM, DePaolo RW, DeBord KL, Jabri B, Schneewind O. Plague bacteria target immune cells during infection. Science (New York, NY). 2005;309(5741):1739-41. doi: 10.1126/science.1114580.
  63. 63.
    Grosdent N, Maridonneau-Parini I, Sory MP, Cornelis GR. Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect Immun. 2002;70(8):4165–76.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Leo JC, Skurnik M. Adhesins of human pathogens from the genus Yersinia. Adv Exp Med Biol. 2011;715:1–15. doi: 10.1007/978-94-007-0940-9_1.CrossRefPubMedGoogle Scholar
  65. 65.
    Tsang TM, Felek S, Krukonis ES. Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and Yop delivery. Infect Immun. 2010;78(8):3358–68. doi: 10.1128/IAI.00238-10.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Kolodziejek AM, Sinclair DJ, Seo KS, Schnider DR, Deobald CF, Rohde HN et al. Phenotypic characterization of OmpX, an Ail homologue of Yersinia pestis KIM. Microbiol (Reading, England). 2007;153(Pt 9):2941-51. doi: 10.1099/mic.0.2006/005694-0.
  67. 67.
    Rosqvist R, Magnusson KE, Wolf-Watz H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 1994;13(4):964–72.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Von Pawel-Rammingen U, Telepnev MV, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol. 2000;36(3):737–48.CrossRefGoogle Scholar
  69. 69.
    Guan KL, Dixon JE. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science (New York, NY). 1990;249(4968):553-6.Google Scholar
  70. 70.
    Persson C, Carballeira N, Wolf-Watz H, Fallman M. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 1997;16(9):2307–18. doi: 10.1093/emboj/16.9.2307.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Shao F, Dixon JE. YopT is a cysteine protease cleaving Rho family GTPases. Adv Exp Med Biol. 2003;529:79–84. doi: 10.1007/0-306-48416-1_14.CrossRefPubMedGoogle Scholar
  72. 72.
    Galyov EE, Hakansson S, Forsberg A, Wolf-Watz H. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature. 1993;361(6414):730–2. doi: 10.1038/361730a0.CrossRefPubMedGoogle Scholar
  73. 73.
    Dukuzumuremyi JM, Rosqvist R, Hallberg B, Akerstrom B, Wolf-Watz H, Schesser K. The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor. J Biol Chem. 2000;275(45):35281–90. doi: 10.1074/jbc.M003009200.CrossRefPubMedGoogle Scholar
  74. 74.
    Wiley DJ, Nordfeldth R, Rosenzweig J, DaFonseca CJ, Gustin R, Wolf-Watz H, et al. The Ser/Thr kinase activity of the Yersinia protein kinase A (YpkA) is necessary for full virulence in the mouse, mollifying phagocytes, and disrupting the eukaryotic cytoskeleton. Microb Path. 2006;40(5):234–43. doi: 10.1016/j.micpath.2006.02.001.CrossRefGoogle Scholar
  75. 75.
    Wiley DJ, Shrestha N, Yang J, Atis N, Dayton K, Schesser K. The activities of the Yersinia protein kinase A (YpkA) and outer protein J (YopJ) virulence factors converge on an eIF2alpha kinase. J Biol Chem. 2009;284(37):24744–53. doi: 10.1074/jbc.M109.010140.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations