Immunologic Research

, Volume 57, Issue 1–3, pp 210–221 | Cite as

Transdisciplinary approach to restore pancreatic islet function

  • Carmen Fotino
  • R. Damaris Molano
  • Camillo Ricordi
  • Antonello Pileggi
Immunology & Microbiology in Miami


The focus of our research is on islet immunobiology. We are exploring novel strategies that could be of assistance in the treatment and prevention of type 1 diabetes, as well as in the restoration of metabolic control via transplantation of insulin producing cells (i.e., islet cells). The multiple facets of diabetes and β-cell replacement encompass different complementary disciplines, such as immunology, cell biology, pharmacology, and bioengineering, among others. Through their interaction and integration, a transdisciplinary dimension is needed in order to address and overcome all aspects of the complex puzzle toward a successful clinical translation of a biological cure for diabetes.


Islet transplantation Autoimmunity Rejection Engraftment Inflammation Innate immunity Bioengineering Implantable device Diabetes Type 1 diabetes Diabetes mellitus Cell transplantation Cellular therapies Transplant microenvironment Imaging Hyperbaric oxygen therapy ATP Purinergic receptors P2X7 CD39 CD73 Adenosine (Ado) Beta cell Immunotherapy Metabolic control Noninvasive imaging Bioluminiscence Confocal microscopy Live imaging 


  1. 1.
    National Diabetes Statistics fact sheet: general information and national estimates on diabetes in the United States, 2005. [database on the Internet]. U.S. Department of Health and Human Services, National Institute of Health. 2005. Available from: Accessed.
  2. 2.
    LeRoith D, Taylor SI, Olefsky JM. Diabetes mellitus: a fundamental and clinical text. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2003.Google Scholar
  3. 3.
    Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464(7293):1293–300.PubMedCrossRefGoogle Scholar
  4. 4.
    Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet. 2001;358(9277):221–9. doi:10.1016/s0140-6736(01)05415-0.PubMedCrossRefGoogle Scholar
  5. 5.
    Skyler JS, Ricordi C. Stopping type 1 diabetes: attempts to prevent or cure type 1 diabetes in man. Diabetes. 2011;60(1):1–8. doi:10.2337/db10-1114.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Pileggi A, Alejandro R, Ricordi C. Clinical islet transplantation. Minerva Endocrinol. 2006;31(3):219–32.PubMedGoogle Scholar
  7. 7.
    Mineo D, Pileggi A, Alejandro R, Ricordi C. Point: steady progress and current challenges in clinical islet transplantation. Diabetes Care. 2009;32(8):1563–9. doi:10.2337/dc09-0490.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Piemonti L, Pileggi A. 25 years of the Ricordi automated method for islet isolation. CellR4. 2013;1(1):8–22.Google Scholar
  9. 9.
    Pileggi A, Cobianchi L, Inverardi L, Ricordi C. Overcoming the challenges now limiting islet transplantation: a sequential, integrated approach. Ann N Y Acad Sci. 2006;1079:383–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Vendrame F, Pileggi A, Laughlin E, Allende G, Martin-Pagola A, Molano RD et al. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes. 2010;59(4):947–57. doi:10.2337/db09-0498.Google Scholar
  11. 11.
    Digon BJ 3rd, Rother KI, Hirshberg B, Harlan DM. Sirolimus-induced interstitial pneumonitis in an islet transplant recipient. Diabetes Care. 2003;26(11):3191.PubMedCrossRefGoogle Scholar
  12. 12.
    Hirshberg B, Rother KI, Digon BJ 3rd, Lee J, Gaglia JL, Hines K, et al. Benefits and risks of solitary islet transplantation for type 1 diabetes using steroid-sparing immunosuppression: the National Institutes of Health experience. Diabetes Care. 2003;26(12):3288–95.PubMedCrossRefGoogle Scholar
  13. 13.
    Cure P, Pileggi A, Froud T, Norris PM, Baidal DA, Cornejo A, et al. Alterations of the female reproductive system in recipients of islet grafts. Transplantation. 2004;78(11):1576–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Hafiz MM, Faradji RN, Froud T, Pileggi A, Baidal DA, Cure P, et al. Immunosuppression and procedure-related complications in 26 patients with type 1 diabetes mellitus receiving allogeneic islet cell transplantation. Transplantation. 2005;80(12):1718–28.PubMedCrossRefGoogle Scholar
  15. 15.
    Molinari M, Al-Saif F, Ryan EA, Lakey JR, Senior PA, Paty BW, et al. Sirolimus-induced ulceration of the small bowel in islet transplant recipients: report of two cases. Am J Transplant. 2005;5(11):2799–804.PubMedCrossRefGoogle Scholar
  16. 16.
    Desai NM, Goss JA, Deng S, Wolf BA, Markmann E, Palanjian M, et al. Elevated portal vein drug levels of sirolimus and tacrolimus in islet transplant recipients: local immunosuppression or islet toxicity? Transplantation. 2003;76(11):1623–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Bussiere CT, Lakey JR, Shapiro AM, Korbutt GS. The impact of the mTOR inhibitor sirolimus on the proliferation and function of pancreatic islets and ductal cells. Diabetologia. 2006;49(10):2341–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Zahr E, Molano RD, Pileggi A, Ichii H, Jose SS, Bocca N, et al. Rapamycin impairs in vivo proliferation of islet beta-cells. Transplantation. 2007;84(12):1576–83.PubMedCrossRefGoogle Scholar
  20. 20.
    Fotino C, Ricordi C, Lauriola V, Alejandro R, Pileggi A. Bone marrow-derived stem cell transplantation for the treatment of insulin-dependent diabetes. Rev Diabet Stud. 2010;7(2):144–57. doi:10.1900/RDS.2010.7.144.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Thom SR. Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol. 2009;106(3):988–95.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Vlodavsky E, Palzur E, Soustiel JF. Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. Neuropathol Appl Neurobiol. 2006;32(1):40–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Wilson HD, Toepfer VE, Senapati AK, Wilson JR, Fuchs PN. Hyperbaric oxygen treatment is comparable to acetylsalicylic acid treatment in an animal model of arthritis. J Pain. 2007;8(12):924–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Wilson HD, Wilson JR, Fuchs PN. Hyperbaric oxygen treatment decreases inflammation and mechanical hypersensitivity in an animal model of inflammatory pain. Brain Res. 2006;1098(1):126–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang Q, Chang Q, Cox RA, Gong X, Gould LJ. Hyperbaric oxygen attenuates apoptosis and decreases inflammation in an ischemic wound model. J Invest Dermatol. 2008;128(8):2102–12.PubMedGoogle Scholar
  26. 26.
    Gallagher KA, Goldstein LJ, Thom SR, Velazquez OC. Hyperbaric oxygen and bone marrow-derived endothelial progenitor cells in diabetic wound healing. Vascular. 2006;14(6):328–37.PubMedCrossRefGoogle Scholar
  27. 27.
    Goldstein LJ, Gallagher KA, Bauer SM, Bauer RJ, Baireddy V, Liu ZJ, et al. Endothelial progenitor cell release into circulation is triggered by hyperoxia-induced increases in bone marrow nitric oxide. Stem Cells (Dayton, Ohio). 2006;24(10):2309–18.CrossRefGoogle Scholar
  28. 28.
    Liu ZJ, Velazquez OC. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal. 2008;10(11):1869–82.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Milovanova TN, Bhopale VM, Sorokina EM, Moore JS, Hunt TK, Hauer-Jensen M, et al. Hyperbaric oxygen stimulates vasculogenic stem cell growth and differentiation in vivo. J Appl Physiol. 2009;106(2):711–28.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Estrada EJ, Valacchi F, Nicora E, Brieva S, Esteve C, Echevarria L, et al. Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transpl. 2008;17(12):1295–304.CrossRefGoogle Scholar
  31. 31.
    Chen SY, Chen YC, Wang JK, Hsu HP, Ho PS, Chen YC, et al. Early hyperbaric oxygen therapy attenuates disease severity in lupus-prone autoimmune (NZB × NZW) F1 mice. Clin Immunol. 2003;108(2):103–10.PubMedCrossRefGoogle Scholar
  32. 32.
    Sakata N, Chan NK, Ostrowski RP, Chrisler J, Hayes P, Kim S, et al. Hyperbaric oxygen therapy improves early posttransplant islet function. Pediatr Diabetes. 2010;11(7):471–8. doi:10.1111/j.1399-5448.2009.00629.x.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Juang JH, Hsu BR, Kuo CH, Uengt SW. Beneficial effects of hyperbaric oxygen therapy on islet transplantation. Cell Transpl. 2002;11(2):95–101.Google Scholar
  34. 34.
    Faleo G, Fotino C, Bocca N, Molano RD, Zahr-Akrawi E, Molina J, et al. Prevention of autoimmune diabetes and induction of beta-cell proliferation in NOD mice by hyperbaric oxygen therapy. Diabetes. 2012;61(7):1769–78. doi:10.2337/db11-0516.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Matzinger P. Introduction to the series. Danger model of immunity. Scand J Immunol. 2001;54(1–2):2–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Ribeiro MM, Klein D, Pileggi A, Molano RD, Fraker C, Ricordi C, et al. Heme oxygenase-1 fused to a TAT peptide transduces and protects pancreatic beta-cells. Biochem Biophys Res Commun. 2003;305(4):876–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Fornoni A, Cobianchi L, Sanabria NY, Pileggi A, Molano RD, Ichii H, et al. The l-isoform but not d-isoforms of a JNK inhibitory peptide protects pancreatic beta-cells. Biochem Biophys Res Commun. 2007;354(1):227–33. doi:10.1016/j.bbrc.2006.12.186.PubMedCrossRefGoogle Scholar
  38. 38.
    Fornoni A, Pileggi A, Molano RD, Sanabria NY, Tejada T, Gonzalez-Quintana J, et al. Inhibition of c-jun N terminal kinase (JNK) improves functional beta cell mass in human islets and leads to AKT and glycogen synthase kinase-3 (GSK-3) phosphorylation. Diabetologia. 2008;51(2):298–308. doi:10.1007/s00125-007-0889-4.PubMedCrossRefGoogle Scholar
  39. 39.
    Bravo-Egana V, Rosero S, Klein D, Jiang Z, Vargas N, Tsinoremas N, et al. Inflammation-mediated regulation of microRNA expression in transplanted pancreatic islets. J Transpl. 2012;2012:723614. doi:10.1155/2012/723614.Google Scholar
  40. 40.
    Hogan AR, Doni M, Molano RD, Ribeiro MM, Szeto A, Cobianchi L, et al. Beneficial effects of ischemic preconditioning on pancreas cold preservation. Cell Transpl. 2012;21(7):1349–60. doi:10.3727/096368911X623853.CrossRefGoogle Scholar
  41. 41.
    Pileggi A, Klein D, Fotino C, Bravo-Engaña V, Doni M, Podetta M et al. MicroRNAs in islet autoimmunity and transplantation. Immunol Res. 2013. doi:10.1007/s12026-013-8436-5.
  42. 42.
    Cechin SR, Perez-Alvarez I, Fenjves E, Molano RD, Pileggi A, Berggren PO, et al. Anti-inflammatory properties of exenatide in human pancreatic islets. Cell Transpl. 2012;21(4):633–48. doi:10.3727/096368911X576027.CrossRefGoogle Scholar
  43. 43.
    Martins PN, Chandraker A, Tullius SG. Modifying graft immunogenicity and immune response prior to transplantation: potential clinical applications of donor and graft treatment. Transpl Int. 2006;19(5):351–9. doi:10.1111/j.1432-2277.2006.00301.x.PubMedCrossRefGoogle Scholar
  44. 44.
    Perico N, Cattaneo D, Sayegh MH, Remuzzi G. Delayed graft function in kidney transplantation. Lancet. 2004;364(9447):1814–27. doi:10.1016/S0140-6736(04)17406-0.PubMedCrossRefGoogle Scholar
  45. 45.
    Pratschke J, Tullius SG, Neuhaus P. Brain death associated ischemia/reperfusion injury. Ann Transpl. 2004;9(1):78–80.Google Scholar
  46. 46.
    Shoskes DA, Halloran PF. Delayed graft function in renal transplantation: etiology, management and long-term significance. J Urol. 1996;155(6):1831–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Pileggi A, Molano RD, Berney T, Ichii H, San Jose S, Zahr E, et al. Prolonged allogeneic islet graft survival by protoporphyrins. Cell Transpl. 2005;14(2–3):85–96.CrossRefGoogle Scholar
  48. 48.
    Pileggi A, Molano RD, Berney T, Cattan P, Vizzardelli C, Oliver R, et al. Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Diabetes. 2001;50(9):1983–91.PubMedCrossRefGoogle Scholar
  49. 49.
    Molano RD, Pileggi A, Song S, Zahr E, San Jose S, Molina J, et al. Prolonged islet allograft survival by alpha-1 antitrypsin: the role of humoral immunity. Transpl Proc. 2008;40(2):455–6. doi:10.1016/j.transproceed.2008.02.009.CrossRefGoogle Scholar
  50. 50.
    Emamaullee JA, Davis J, Pawlick R, Toso C, Merani S, Cai SX, et al. Caspase inhibitor therapy synergizes with costimulation blockade to promote indefinite islet allograft survival. Diabetes. 2010;59(6):1469–77. doi:10.2337/db09-0502.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Alejandro R, Barton FB, Hering BJ, Wease S. 2008 Update from the collaborative Islet transplant registry. Transplantation. 2008;86(12):1783–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Turgeon NA, Avila JG, Cano JA, Hutchinson JJ, Badell IR, Page AJ, et al. Experience with a novel efalizumab-based immunosuppressive regimen to facilitate single donor islet cell transplantation. Am J Transpl. 2010;10(9):2082–91. doi:10.1111/j.1600-6143.2010.03212.x.CrossRefGoogle Scholar
  53. 53.
    Hering BJ, Kandaswamy R, Ansite JD, Eckman PM, Nakano M, Sawada T, et al. Single-donor, marginal-dose islet transplantation in patients with type 1 diabetes. JAMA. 2005;293(7):830–5. doi:10.1001/jama.293.7.830.PubMedCrossRefGoogle Scholar
  54. 54.
    Fotino C, Pileggi A. Blockade of leukocyte function antigen-1 (LFA-1) in clinical islet transplantation. Curr Diab Rep. 2011;11(5):337–44. doi:10.1007/s11892-011-0214-y.PubMedCrossRefGoogle Scholar
  55. 55.
    Chowdhury SA, Nagata M, Yamada K, Nakayama M, Chakrabarty S, Jin Z, et al. Tolerance mechanisms in murine autoimmune diabetes induced by anti-ICAM-1/LFA-1 mAb and anti-CD8 mAb. Kobe J Med Sci. 2002;48(5–6):167–75.PubMedGoogle Scholar
  56. 56.
    Hasegawa Y, Yokono K, Taki T, Amano K, Tominaga Y, Yoneda R, et al. Prevention of autoimmune insulin-dependent diabetes in non-obese diabetic mice by anti-LFA-1 and anti-ICAM-1 mAb. Int Immunol. 1994;6(6):831–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Ninova D, Dean PG, Stegall MD. Immunomodulation through inhibition of multiple adhesion molecules generates resistance to autoimmune diabetes in NOD mice. J Autoimmun. 2004;23(3):201–9. doi:10.1016/j.jaut.2004.07.002.PubMedCrossRefGoogle Scholar
  58. 58.
    Berney T, Pileggi A, Molano RD, Poggioli R, Zahr E, Ricordi C, et al. The effect of simultaneous CD154 and LFA-1 blockade on the survival of allogeneic islet grafts in nonobese diabetic mice. Transplantation. 2003;76(12):1669–74. doi:10.1097/01.TP.0000092525.17025.D0.PubMedCrossRefGoogle Scholar
  59. 59.
    Molano RD, Berney T, Li H, Cattan P, Pileggi A, Vizzardelli C, et al. Prolonged islet graft survival in NOD mice by blockade of the CD40-CD154 pathway of T-cell costimulation. Diabetes. 2001;50(2):270–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Arefanian H, Tredget EB, Rajotte RV, Korbutt GS, Gill RG, Rayat GR. Combination of anti-CD4 with anti-LFA-1 and anti-CD154 monoclonal antibodies promotes long-term survival and function of neonatal porcine islet xenografts in spontaneously diabetic NOD mice. Cell Transpl. 2007;16(8):787–98.CrossRefGoogle Scholar
  61. 61.
    Molano RD, Pileggi A, Berney T, Poggioli R, Zahr E, Oliver R, et al. Prolonged islet allograft survival in diabetic NOD mice by targeting CD45RB and CD154. Diabetes. 2003;52(4):957–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Schenk U, Westendorf AM, Radaelli E, Casati A, Ferro M, Fumagalli M, et al. Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci Signal. 2008;1(39):ra6. doi:10.1126/scisignal.1160583.PubMedCrossRefGoogle Scholar
  63. 63.
    Robson SC, Sevigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal. 2006;2(2):409–30. doi:10.1007/s11302-006-9003-5.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Chalmin F, Mignot G, Bruchard M, Chevriaux A, Vegran F, Hichami A, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity. 2012;36(3):362–73. doi:10.1016/j.immuni.2011.12.019.PubMedCrossRefGoogle Scholar
  65. 65.
    Placido R, Auricchio G, Falzoni S, Battistini L, Colizzi V, Brunetti E, et al. P2X(7) purinergic receptors and extracellular ATP mediate apoptosis of human monocytes/macrophages infected with Mycobacterium tuberculosis reducing the intracellular bacterial viability. Cell Immunol. 2006;244(1):10–8. doi:10.1016/j.cellimm.2007.02.001.PubMedCrossRefGoogle Scholar
  66. 66.
    Beigi RD, Kertesy SB, Aquilina G, Dubyak GR. Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. Br J Pharmacol. 2003;140(3):507–19. doi:10.1038/sj.bjp.0705470.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Lappas CM, Rieger JM, Linden J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol. 2005;174(2):1073–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204(6):1257–65. doi:10.1084/jem.20062512.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3 + Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110(4):1225–32. doi:10.1182/blood-2006-12-064527.PubMedCrossRefGoogle Scholar
  70. 70.
    Romio M, Reinbeck B, Bongardt S, Huls S, Burghoff S, Schrader J. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am J Physiol Cell Physiol. 2011;301(2):C530–9. doi:10.1152/ajpcell.0 0385.2010.PubMedCrossRefGoogle Scholar
  71. 71.
    Ghaemi Oskouie F, Shameli A, Yang A, Desrosiers MD, Mucsi AD, Blackburn MR, et al. High levels of adenosine deaminase on dendritic cells promote autoreactive T cell activation and diabetes in nonobese diabetic mice. J Immunol. 2011;186(12):6798–806. doi:10.4049/jimmunol.1004222.PubMedCrossRefGoogle Scholar
  72. 72.
    Vergani A, Fotino C, D’Addio F, Tezza S, Podetta M, Gatti F, et al. Effect of the purinergic inhibitor oxidized ATP in a model of islet allograft rejection. Diabetes. 2013;62(5):1665–75. doi:10.2337/db12-0242.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Vergani A, Tezza S, D’Addio F, Fotino C, Liu K, Niewczas M, et al. Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7. Circulation. 2013;127(4):463–75. doi:10.1161/CIRCULATIONAHA.112.123653.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Jacques-Silva MC, Correa-Medina M, Cabrera O, Rodriguez-Diaz R, Makeeva N, Fachado A, et al. ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci USA. 2010;107(14):6465–70. doi:10.1073/pnas.0908935107.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Kittel A, Garrido M, Varga G. Localization of NTPDase1/CD39 in normal and transformed human pancreas. J Histochem Cytochem. 2002;50(4):549–56.PubMedCrossRefGoogle Scholar
  76. 76.
    Ricordi C. Islet transplantation: a brave new world. Diabetes. 2003;52(7):1595–603.PubMedCrossRefGoogle Scholar
  77. 77.
    Kemp CB, Knight MJ, Scharp DW, Ballinger WF, Lacy PE. Effect of transplantation site on the results of pancreatic islet isografts in diabetic rats. Diabetologia. 1973;9(6):486–91.PubMedCrossRefGoogle Scholar
  78. 78.
    Scharp DW, Marchetti P, Swanson C, Newton M, McCullough CS, Olack B. The effect of transplantation site and islet mass on long-term survival and metabolic and hormonal function of canine purified islet autografts. Cell Transpl. 1992;1(2–3):245–54.Google Scholar
  79. 79.
    Ricordi C, Scharp DW, Lacy PE. Reversal of diabetes in nude mice after transplantation of fresh and 7-day-cultured (24 °C) human pancreatic islets. Transplantation. 1988;45(5):994–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Lanza RP, Borland KM, Lodge P, Carretta M, Sullivan SJ, Muller TE, et al. Treatment of severely diabetic pancreatectomized dogs using a diffusion-based hybrid pancreas. Diabetes. 1992;41(7):886–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Petruzzo P, Pibiri L, De Giudici MA, Basta G, Calafiore R, Falorni A, et al. Xenotransplantation of microencapsulated pancreatic islets contained in a vascular prosthesis: preliminary results. Transpl Int. 1991;4(4):200–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Pileggi A, Molano RD, Ricordi C, Zahr E, Collins J, Valdes R, et al. Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation. 2006;81(9):1318–24.PubMedCrossRefGoogle Scholar
  83. 83.
    Yasunami Y, Lacy PE, Finke EH. A new site for islet transplantation—a peritoneal-omental pouch. Transplantation. 1983;36(2):181–2.PubMedCrossRefGoogle Scholar
  84. 84.
    Guan J, Zucker PF, Atkison P, Behme MT, Dupre J, Stiller CR. Liver-omental pouch and intrahepatic islet transplants produce portal insulin delivery and prevent hyperinsulinemia in rats. Transpl Proc. 1995;27(6):3236.Google Scholar
  85. 85.
    Guan J, Behme MT, Zucker P, Atkison P, Hramiak I, Zhong R, et al. Glucose turnover and insulin sensitivity in rats with pancreatic islet transplants. Diabetes. 1998;47(7):1020–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Kin T, Korbutt GS, Rajotte RV. Survival and metabolic function of syngeneic rat islet grafts transplanted in the omental pouch. Am J Transpl. 2003;3(3):281–5.CrossRefGoogle Scholar
  87. 87.
    Kenyon NS, Berman DM, O’Neil JJ, Kenyon NM, Zimmerman M, Pileggi A, et al. Survival and function of allogeneic islets implanted in an omental pouch in cynomolgus monkeys (Macaca fascicularis). Xenotransplantation. 2007;14(5):406.Google Scholar
  88. 88.
    Ao Z, Matayoshi K, Yakimets WJ, Katyal D, Rajotte RV, Warnock GL. Development of an omental pouch site for islet transplantation. Transpl Proc. 1992;24(6):2789.Google Scholar
  89. 89.
    Ao Z, Matayoshi K, Lakey JR, Rajotte RV, Warnock GL. Survival and function of purified islets in the omental pouch site of outbred dogs. Transplantation. 1993;56(3):524–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Simeonovic CJ, Dhall DP, Wilson JD, Lafferty KJ. A comparative study of transplant sites for endocrine tissue transplantation in the pig. Aust J Exp Biol Med Sci. 1986;64(Pt 1):37–41.PubMedCrossRefGoogle Scholar
  91. 91.
    Weber CJ, Hardy MA, Pi-Sunyer F, Zimmerman E, Reemtsma K. Tissue culture preservation and intramuscular transplantation of pancreatic islets. Surgery. 1978;84(1):166–74.PubMedGoogle Scholar
  92. 92.
    Rafael E, Tibell A, Ryden M, Lundgren T, Savendahl L, Borgstrom B et al. Intramuscular autotransplantation of pancreatic islets in a 7-year-old child: a 2-year follow-up. Am J Transpl. 2008;8(2):458–62.Google Scholar
  93. 93.
    Speier S, Nyqvist D, Cabrera O, Yu J, Molano RD, Pileggi A, et al. Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med. 2008;14(5):574–8.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Abdulreda MH, Faleo G, Molano RD, Lopez-Cabezas M, Molina J, Tan Y, et al. High-resolution, noninvasive longitudinal live imaging of immune responses. Proc Natl Acad Sci USA. 2011;108(31):12863–8. doi:10.1073/pnas.1105002108.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Perez VL, Caicedo A, Berman DM, Arrieta E, Abdulreda MH, Rodriguez-Diaz R, et al. The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes. Diabetologia. 2011;54(5):1121–6. doi:10.1007/s00125-011-2091-y.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Kakabadze Z, Gupta S, Pileggi A, Molano RD, Ricordi C, Shatirishvili G, et al. Correction of diabetes mellitus by transplanting minimal mass of syngeneic islets into vascularized small intestinal segment. Am J Transpl. 2013. doi:10.1111/ajt.12412.Google Scholar
  97. 97.
    Joseph B, Berishvili E, Benten D, Kumaran V, Liponava E, Bhargava K, et al. Isolated small intestinal segments support auxiliary livers with maintenance of hepatic functions. Nat Med. 2004;10(7):749–53.PubMedCrossRefGoogle Scholar
  98. 98.
    Cantarelli E, Melzi R, Mercalli A, Sordi V, Ferrari G, Lederer CW, et al. Bone marrow as an alternative site for islet transplantation. Blood. 2009;114(20):4566–74. doi:10.1182/blood-2009-03-209973.PubMedCrossRefGoogle Scholar
  99. 99.
    Cantarelli E, Piemonti L. Alternative transplantation sites for pancreatic islet grafts. Curr Diab Rep. 2011;11(5):364–74. doi:10.1007/s11892-011-0216-9.PubMedCrossRefGoogle Scholar
  100. 100.
    Brady AC, Martino MM, Pedraza E, Sukert S, Pileggi A, Ricordi C, et al. Proangiogenic hydrogels within macroporous scaffolds enhance islet engraftment in an extrahepatic site. Tissue Eng Part A. 2013. doi:10.1089/ten.TEA.2012.0686.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Wang Y, Lanzoni G, Carpino G, Cui CB, Dominguez-Bendala J, Wauthier E et al. Biliary tree stem cells, precursors to pancreatic committed progenitors: evidence for possible life-long pancreatic organogenesis. Stem cells (Dayton, Ohio). 2013. doi:10.1002/stem.1460.
  102. 102.
    Rafael E, Tibell A, Ryden M, Lundgren T, Savendahl L, Borgstrom B, et al. Intramuscular autotransplantation of pancreatic islets in a 7-year-old child: a 2-year follow-up. Am J Transplant. 2008;8(2):458–62. doi:10.1111/j.1600-6143.2007.02060.x.PubMedCrossRefGoogle Scholar
  103. 103.
    Dardenne S, Sterkers A, Leroy C, Da Mata L, Zerbib P, Pruvot FR, et al. Laparoscopic spleen-preserving distal pancreatectomy followed by intramuscular autologous islet transplantation for traumatic pancreatic transection in a young adult. JOP. 2012;13(3):285–8.PubMedGoogle Scholar
  104. 104.
    Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 year after xenotransplantation. Xenotransplantation. 2007;14(2):157–61. doi:10.1111/j.1399-3089.2007.00384.x.PubMedCrossRefGoogle Scholar
  105. 105.
    Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B, et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care. 2011;34(11):2406–9. doi:10.2337/dc11-0731.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Maffi P, Balzano G, Ponzoni M, Nano R, Sordi V, Melzi R, et al. Autologous pancreatic islet transplantation in human bone marrow. Diabetes. 2013. doi:10.2337/db13-0465.Google Scholar
  107. 107.
    Berman DM, O’Neil JJ, Coffey LC, Chaffanjon PC, Kenyon NM, Ruiz P Jr, et al. Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am J Transplant. 2009;9(1):91–104. doi:10.1111/j.1600-6143.2008.02489.x.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Pedraza E, Brady AC, Fraker CA, Molano RD, Sukert S, Berman DM, et al. Macroporous three-dimensional PDMS scaffolds for extrahepatic islet transplantation. Cell Transpl. 2013;22(7):1123–35. doi:10.3727/096368912X657440.CrossRefGoogle Scholar
  109. 109.
    Giuliani M, Moritz W, Bodmer E, Dindo D, Kugelmeier P, Lehmann R, et al. Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia. Cell Transpl. 2005;14(1):67–76.CrossRefGoogle Scholar
  110. 110.
    Moritz W, Meier F, Stroka DM, Giuliani M, Kugelmeier P, Nett PC, et al. Apoptosis in hypoxic human pancreatic islets correlates with HIF-1alpha expression. Faseb J. 2002;16(7):745–7.PubMedGoogle Scholar
  111. 111.
    Emamaullee JA, Rajotte RV, Liston P, Korneluk RG, Lakey JR, Shapiro AM, et al. XIAP overexpression in human islets prevents early posttransplant apoptosis and reduces the islet mass needed to treat diabetes. Diabetes. 2005;54(9):2541–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Li X, Chen H, Epstein PN. Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species. J Biol Chem. 2004;279(1):765–71.PubMedCrossRefGoogle Scholar
  113. 113.
    Bocca N, Ricordi C, Kenyon NS, Latta P, Buchwald P. 3-D multiphysics FEM modeling to optimize local drug delivery in a biohybrid device designed for cell transplant. In: Proceedings of the Comsol Conference. 2007. p. 101–7.Google Scholar
  114. 114.
    Bocca N, Pileggi A, Molano RD, Marzorati S, Wu W, Bodor N et al. Soft corticosteroids for local immunosuppression: exploring the possibility for the use of loteprednol etabonate in islet transplantation. Pharmazie. 2008;63(3):226–32.Google Scholar
  115. 115.
    Buchwald P, Bocca N, Marzorati S, Hochhaus G, Bodor N, Stabler C, et al. Feasibility of localized immunosuppression: 1. Exploratory studies with glucocorticoids in a biohybrid device designed for cell transplantation. Pharmazie. 2010;65(6):421–8.PubMedGoogle Scholar
  116. 116.
    Ahlgren U, Gotthardt M. Approaches for imaging islets: recent advances and future prospects. Adv Exp Med Biol. 2010;654:39–57.PubMedCrossRefGoogle Scholar
  117. 117.
    Berney T, Toso C. Monitoring of the islet graft. Diabetes Metab. 2006;32(5 Pt 2):503–12.PubMedCrossRefGoogle Scholar
  118. 118.
    Medarova Z, Moore A. MRI as a tool to monitor islet transplantation. Nat Rev. 2009;5(8):444–52.Google Scholar
  119. 119.
    Eriksson O, Eich T, Sundin A, Tibell A, Tufveson G, Andersson H, et al. Positron emission tomography in clinical islet transplantation. Am J Transpl. 2009;9(12):2816–24.CrossRefGoogle Scholar
  120. 120.
    Eriksson O, Jahan M, Johnstrom P, Korsgren O, Sundin A, Halldin C, et al. In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass. Nucl Med Biol. 2010;37(3):357–63.PubMedCrossRefGoogle Scholar
  121. 121.
    Prescher JA, Contag CH. Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol. 2010;14(1):80–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Speier S, Nyqvist D, Kohler M, Caicedo A, Leibiger IB, Berggren PO. Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye. Nat Protoc. 2008;3(8):1278–86.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Martinic MM, von Herrath MG. Real-time imaging of the pancreas during development of diabetes. Immunol Rev. 2008;221:200–13.PubMedCrossRefGoogle Scholar
  124. 124.
    Nyman LR, Wells KS, Head WS, McCaughey M, Ford E, Brissova M, et al. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J Clin Investig. 2008;118(11):3790–7.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Molano RD, Abdulreda M, Faleo G, Molina J, Berggren PO, Ricordi C, et al. Allogeneic islet transplantation in the anterior chamber of the eye for in vivo studies of islet immunobiology. Diabetes. 2009;58:A499.CrossRefGoogle Scholar
  126. 126.
    Nyqvist D, Speier S, Rodriguez-Diaz R, Molano RD, Lipovsek S, Rupnik M, et al. Donor islet endothelial cells in pancreatic islet revascularization. Diabetes. 2011;60(10):2571–7. doi:10.2337/db10-1711.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Fan Z, Spencer JA, Lu Y, Pitsillides CM, Singh G, Kim P, et al. In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response. Nat Med. 2010;16(6):718–22.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Abdulreda MH, Caicedo A, Berggren PO. A natural body window to study human pancreatic islet function and survival. CellR4. 2013;1(2):111–22.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carmen Fotino
    • 1
  • R. Damaris Molano
    • 1
  • Camillo Ricordi
    • 1
    • 2
    • 3
    • 4
    • 5
  • Antonello Pileggi
    • 1
    • 2
    • 3
    • 4
  1. 1.Cell Transplant Center, Diabetes Research InstituteUniversity of MiamiMiamiUSA
  2. 2.DeWitt-Daughtry Department of SurgeryUniversity of Miami Miller School of MedicineMiamiUSA
  3. 3.Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiUSA
  4. 4.Department of Biomedical EngineeringUniversity of MiamiMiamiUSA
  5. 5.Department of MedicineUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations