Immunologic Research

, Volume 56, Issue 2–3, pp 465–476

A subset of anti-rotavirus antibodies directed against the viral protein VP7 predicts the onset of celiac disease and induces typical features of the disease in the intestinal epithelial cell line T84

  • Marzia Dolcino
  • Giovanna Zanoni
  • Caterina Bason
  • Elisa Tinazzi
  • Elisa Boccola
  • Enrico Valletta
  • Giovanna Contreas
  • Claudio Lunardi
  • Antonio Puccetti
Diagnosis of Autoimmunity

Abstract

Celiac disease (CD) is an autoimmune disorder of the small intestine triggered by environmental factors in genetically predisposed individuals. A strong association between type 1 diabetes (T1DM) and CD has been reported. We have previously shown that rotavirus infection may be involved in the pathogenesis of CD through a mechanism of molecular mimicry. Indeed, we identified a subset of anti-transglutaminase IgA antibodies that recognize the rotavirus viral protein VP7. In this study, we aimed at evaluating whether such antibodies may predict the onset of CD in children affected by T1DM. Moreover, to further analyze the link between rotavirus infection and pathogenesis of CD, we analyzed the effect of anti-rotavirus VP7 antibodies on T84 intestinal epithelial cells using the gene-array technique, complemented by the analysis of molecules secreted in the supernatant of stimulated cells. We found that anti-rotavirus VP7 antibodies are present in the vast majority (81 %) of T1DM-CD tested sera, but are detectable also in a fraction (27 %) of T1DM children without CD. Moreover, we found that anti-rotavirus VP7 antibodies are present before the CD onset, preceding the detection of anti-tTG and anti-endomysium antibodies. The gene-array analysis showed that purified anti-rotavirus VP7 antibodies modulate genes that are involved in apoptosis, inflammation, and alteration of the epithelial barrier integrity in intestinal epithelial cells, all typical features of CD. Taken together, these new data further support the involvement of rotavirus infection in the pathogenesis of CD and suggest a predictive role of anti-rotavirus VP7 antibodies.

Keywords

Celiac disease Autoantibodies Rotavirus Gene expression 

Supplementary material

12026_2013_8420_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 40 kb)
12026_2013_8420_MOESM2_ESM.xls (4.3 mb)
Supplementary material 2 (XLS 4439 kb)

References

  1. 1.
    Rewers M. Epidemiology of celiac disease: what are the prevalence, incidence, and progression of celiac disease? Gastroenterology. 2005;128:S47–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Sollid LM. Celiac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol. 2002;2:647–55.PubMedCrossRefGoogle Scholar
  3. 3.
    Lunardi C, Bason C, Navone R, Millo E, Damonte G, Corrocher R, et al. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat Med. 2000;6:1183–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Lunardi C, Bason C, Leandri M, Navone R, Lestani M, Millo E, et al. Autoantibodies to inner ear and endothelial antigens in Cogan’s syndrome. Lancet. 2002;360:915–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Navone R, Lunardi C, Gerli R, Tinazzi E, Peterlana D, Bason C, et al. Identification of tear lipocalin as a novel autoantigen target in Sjögren’s syndrome. J Autoimmun. 2005;25:229–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Puccetti A, Bason C, Simeoni S, Millo E, Tinazzi E, Beri R, et al. In chronic idiopathic urticaria autoantibodies against Fc epsilonRII/CD23 induce histamine release via eosinophil activation. Clin Exp Allergy. 2005;35:1599–607.PubMedCrossRefGoogle Scholar
  7. 7.
    Zanoni G, Navone R, Lunardi C, Tridente G, Bason C, Sivori S, et al. In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med. 2006;3:e358.PubMedCrossRefGoogle Scholar
  8. 8.
    Lindfors K, Mäki M, Kaukinen K. Transglutaminase 2-targeted autoantibodies in celiac disease: pathogenetic players in addition to diagnostic tools? Autoimmun Rev. 2010;9:744–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Stene LC, Honeyman MC, Hoffenberg EJ, Haas JE, Sokol RJ, Emery L, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol. 2006;101:2333–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Kooy-Winkelaar Y, van Lummel M, Moustakas AK, Schweizer J, Mearin ML, Mulder CJ, et al. Gluten-specific T cells cross-react between HLA-DQ8 and the HLA-DQ2α/DQ8β transdimer. J Immunol. 2011;187:5123–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Waisbourd-Zinman O, Hojsak I, Rosenbach Y, Mozer-Glassberg Y, Shalitin S, Phillip M, Shamir R. Spontaneous normalization of anti-tissue transglutaminase antibody levels is common in children with type 1 diabetes mellitus. Dig Dis Sci. 2012;57:1314–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Volta U, Tovoli F, Caio G. Clinical and immunological features of celiac disease in patients with Type 1 diabetes mellitus. Expert Rev Gastroenterol Hepatol. 2011;5:479–87.PubMedCrossRefGoogle Scholar
  13. 13.
    Salardi S, Volta U, Zucchini S, Fiorini E, Maltoni G, Vaira B, et al. Prevalence of celiac disease in children with type 1 diabetes mellitus increased in the mid-1990s: an 18-year longitudinal study based on anti-endomysial antibodies. J Pediatr Gastroenterol Nutr. 2008;46:612–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Gabriel S, Mihaela I, Angela B, Mariana A, Doru D. Prevalence of IgA antitissue transglutaminase antibodies in children with type 1 diabetes mellitus. J Clin Lab Anal. 2011;25:156–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Contreas G, Valletta E, Ulmi D, Cantoni S, Pinelli L. Screening of coeliac disease in North Italian children with type I diabetes: limited usefulness of HLA-DQ typing. Acta Paediatr. 2004;93:628–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Oberhuber G, Granditsch G, Vogelsang H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol. 1999;11:1185–94.PubMedCrossRefGoogle Scholar
  17. 17.
    Wellings DA, Atherton E. Standard FMOC protocols. Meth Enzymol. 1997;289:44–67.PubMedCrossRefGoogle Scholar
  18. 18.
    Katz S, Irizarry RA, Lin X, Tripputi M, Porter MW. A summarization approach for Affymetrix GeneChip data using a reference training set from a large, biologically diverse database. BMC Bioinformatics. 2006;. doi:10.1186/1471-2105-7-464.PubMedGoogle Scholar
  19. 19.
    Diosdado B, van Oort E, Wijmenga C. “Coelionomics”: towards understanding the molecular pathology of coeliac disease. Clin Chem Lab Med. 2005;43:685–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Ramsay RG, Malaterre J. Insights into c-Myb functions through investigating colonic crypts. Blood Cells Mol Dis. 2007;39:287–91.PubMedCrossRefGoogle Scholar
  21. 21.
    Merlos-Suàrez A, Batlle E. Eph-ephrin signalling in adult tissue and cancer. Curr Opin Cell Biol. 2008;20:194–200.PubMedCrossRefGoogle Scholar
  22. 22.
    Juuti-Uusitalo K, Mäki M, Kainulainen H, Isola J, Kaukinen K. Gluten affects epithelial differentiation-associated genes in small intestinal mucosa of coeliac patients. Clin Exp Immunol. 2007;150:294–305.PubMedCrossRefGoogle Scholar
  23. 23.
    Bracken S, Byrne G, Kelly J, Jackson J, Feighery C. Altered gene expression in highly purified enterocytes from patients with active coeliac disease. BMC Genomics. 2008;. doi:10.1186/1471-2164-9-377.PubMedGoogle Scholar
  24. 24.
    Zwiers A, Fuss IJ, Leijen S, Mulder CJ, Kraal G, Bouma G. Increased expression of the tight junction molecule claudin-18 A1 in both experimental colitis and ulcerative colitis. Inflamm Bowel Dis. 2008;14:1652–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Schulzke JD, Schulzke I, Fromm M, Riecken EO. Epithelial barrier and ion transport in coeliac sprue: electrical measurements on intestinal aspiration biopsy specimens. Gut. 1995;37:777–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Rocha F, Musch MW, Lishanskiy L, Bookstein C, Sugi K, Xie Y, et al. IFN-gamma downregulates expression of Na(+)/H(+) exchangers NHE2 and NHE3 in rat intestine and human Caco-2/bbe cells. Am J Physiol Cell Physiol. 2001;280:C1224–32.PubMedGoogle Scholar
  27. 27.
    Gill RK, Saksena S, Tyagi S, Alrefai WA, Malakooti J, Sarwar Z, et al. Serotonin inhibits Na +/H + exchange activity via 5-HT4 receptors and activation of PKC alpha in human intestinal epithelial cells. Gastroenterology. 2005;128:962–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Juuti-Uusitalo K, Mäki M, Kaukinen K, Collin P, Visakorpi T, Vihinen M, Kainulainen H. cDNA microarray analysis of gene expression in coeliac disease jejunal biopsy samples. J Autoimmun. 2004;22:249–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Benya RV, Matkowskyj KA, Danilkovich A, Hecht G. Galanin causes Cl- secretion in the human colon. Potential significance of inflammation-associated NF-kappa B activation on galanin-1 receptor expression and function. Ann N Y Acad Sci. 1998;863:64–77.PubMedCrossRefGoogle Scholar
  30. 30.
    Diosdado B, Wapenaar MC, Franke L, Duran KJ, Goerres MJ, Hadithi M, et al. A microarray screen for novel candidate genes in coeliac disease pathogenesis. Gut. 2004;53:944–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Barone MV, Gimigliano A, Castoria G, Paolella G, Maurano F, Paparo F, et al. Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut. 2007;56:480–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Ciccocioppo R, Di Sabatino A, Bauer M, Della Riccia DN, Bizzini F, Biagi F, et al. Matrix metalloproteinase pattern in celiac duodenal mucosa. Lab Invest. 2005;85:397–407.PubMedCrossRefGoogle Scholar
  33. 33.
    Parks WC, Wilson CL, Lopez-Boado YS. Matrix metallo-proteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4:617–29.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marzia Dolcino
    • 1
  • Giovanna Zanoni
    • 2
  • Caterina Bason
    • 3
  • Elisa Tinazzi
    • 3
  • Elisa Boccola
    • 2
  • Enrico Valletta
    • 4
  • Giovanna Contreas
    • 4
  • Claudio Lunardi
    • 3
  • Antonio Puccetti
    • 1
    • 5
  1. 1.Institute Giannina GasliniGenoaItaly
  2. 2.Department of Pathology and Diagnostics, Section of ImmunologyUniversity of VeronaVeronaItaly
  3. 3.Department of Medicine, Unit of Autoimmune DiseasesUniversity of VeronaVeronaItaly
  4. 4.Department of PediatricsUniversity of VeronaVeronaItaly
  5. 5.Department of Experimental Medicine, Section of HistologyUniversity of GenoaGenoaItaly

Personalised recommendations