Immunologic Research

, Volume 56, Issue 2–3, pp 317–324 | Cite as

Autoimmune/autoinflammatory syndrome induced by adjuvants (ASIA syndrome) in commercial sheep

  • Lluís Luján
  • Marta Pérez
  • Eider Salazar
  • Neila Álvarez
  • Marina Gimeno
  • Pedro Pinczowski
  • Silvia Irusta
  • Jesús Santamaría
  • Nerea Insausti
  • Yerzol Cortés
  • Luis Figueras
  • Isabel Cuartielles
  • Miguel Vila
  • Enrique Fantova
  • José Luis Gracia Chapullé
ETIO PATHOGENESIS OF AUTOIMMUNITY

Abstract

We describe a form of the autoimmune/autoinflammatory syndrome induced by adjuvants (ASIA syndrome) in commercial sheep, linked to the repetitive inoculation of aluminum-containing adjuvants through vaccination. The syndrome shows an acute phase that affects less than 0.5 % of animals in a given herd, it appears 2–6 days after an adjuvant-containing inoculation and it is characterized by an acute neurological episode with low response to external stimuli and acute meningoencephalitis, most animals apparently recovering afterward. The chronic phase is seen in a higher proportion of flocks, it can follow the acute phase, and it is triggered by external stimuli, mostly low temperatures. The chronic phase begins with an excitatory phase, followed by weakness, extreme cachexia, tetraplegia and death. Gross lesions are related to a cachectic process with muscular atrophy, and microscopic lesions are mostly linked to a neurodegenerative process in both dorsal and ventral column of the gray matter of the spinal cord. Experimental reproduction of ovine ASIA in a small group of repeatedly vaccinated animals was successful. Detection of Al(III) in tissues indicated the presence of aluminum in the nervous tissue of experimental animals. The present report is the first description of a new sheep syndrome (ovine ASIA syndrome) linked to multiple, repetitive vaccination and that can have devastating consequences as it happened after the compulsory vaccination against bluetongue in 2008. The ovine ASIA syndrome can be used as a model of other similar diseases affecting both human and animals. A major research effort is needed in order to understand its complex pathogenesis.

Keywords

Sheep Aluminum Vaccines Adjuvant Autoimmunity Cachexia Intoxication 

References

  1. 1.
    Zandman-Goddard G, Blank M, Ehrenfeld M, Gilburd B, Peter J, Shoenfeld Y. A comparison of autoantibody production in asymptomatic and symptomatic women with silicone breast implants. J Rheumatol. 1999;26:73–7.PubMedGoogle Scholar
  2. 2.
    Gherardi RK, Coquet M, Cherin P, Belec L, Moretto P, Dreyfus PA, Pellissier JF, Chariot P, Authier FJ. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain. 2001;124:1821–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Shoenfeld Y, Agmon-Levin N. ‘ASIA’—autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun. 2011;36:4–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Israeli E. Gulf War syndrome as a part of the autoimmune (autoinflammatory) syndrome induced by adjuvant (ASIA). Lupus. 2012;21:190–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Baylor NW, Egan W, Richman P. Aluminum salts in vaccines-US perspective. Vaccine. 2002;20(Suppl 3):S18–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Kumar V, Gill KD. Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol. 2009;83:965–78.PubMedCrossRefGoogle Scholar
  7. 7.
    Exley C, Swarbrick L, Gherardi RK, Authier FJ. A role for the body burden of aluminium in vaccine-associated macrophagic myofasciitis and chronic fatigue syndrome. Med Hypotheses. 2009;72:135–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Tomljenovic L, Shaw CA. Aluminum vaccine adjuvants: are they safe? Curr Med Chem. 2011;18:2630–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008;453:1122–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9:287–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Exley C, Siesjö P, Erikssson H. The immunobiology of aluminium adjuvants: how do they really work? Trends Immunol. 2010;31:103–9.PubMedCrossRefGoogle Scholar
  12. 12.
    González JM, Figueras L, Ortega ME, Lozano M, Ruíz de Arcaute M, Royo R, Cebrián LM, Ferrer LM, Fariñas F, de Jalón JA, de las Heras M. Possible adverse reactions in sheep after vaccination with inactivated BTV vaccines. Vet Rec. 2010;166:757–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Tourbah A, Gout O, Liblau R, Lyon-Caen O, Bougniot C, Iba-Zizen MT, Cabanis EA. Encephalitis after hepatitis B vaccination: recurrent disseminated encephalitis or MS? Neurology. 1999;53:396–401.PubMedCrossRefGoogle Scholar
  14. 14.
    Huynh W, Cordato DJ, Kehdi E, Masters LT, Dedousis C. Post-vaccination encephalomyelitis: literature review and illustrative case. J Clin Neurosci. 2008;15:1315–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Gherardi RK, Authier FJ. Macrophagic myofasciitis: characterization and pathophysiology. Lupus. 2012;21:184–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Yang YQ, Li JC. Progress of research in cell-in-cell phenomena. Anat Rec. 2012;295:372–7.CrossRefGoogle Scholar
  17. 17.
    Guis S, Pellissier JF, Nicoli F, Reviron D, Mattei JP, Gherardi RK, Pelletier J, Kaplanski G, Figarella-Branger D, Roudier J. HLA-DRB1*01 and macrophagic myofasciitis. Arthritis Rheum. 2002;46:2535–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Divers TJ, Mohammed HO, Cummings JF. Equine motor neuron disease. Vet Clin North Am Equine Pract. 1997;13:97–105.PubMedGoogle Scholar
  19. 19.
    Couette M, Boisse MF, Maison P, Brugieres P, Cesaro P, Chevalier X, Gherardi RK, Bachoud-Levi AC, Authier FJ. Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction. J Inorg Biochem. 2009;103:1571–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Shaw CA, Petrik MS. Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem. 2009;103:1555–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Trendelenburg G. Acute neurodegeneration and the inflammasome: central processor for danger signals and the inflammatory response? J Cereb Blood Flow Metab. 2008;28:867–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Shi F, Yang L, Kouadir M, Yang Y, Wang J, Zhou X, Yin X, Zhao D. The NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial activation. J Neuroinflammation. 2012;9:73.PubMedCrossRefGoogle Scholar
  23. 23.
    Kubota T, Koike R. Cryopyrin-associated periodic syndromes: background and therapeutics. Mod Rheumatol. 2010;20:213–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lluís Luján
    • 1
  • Marta Pérez
    • 1
  • Eider Salazar
    • 1
  • Neila Álvarez
    • 1
  • Marina Gimeno
    • 1
  • Pedro Pinczowski
    • 1
  • Silvia Irusta
    • 2
  • Jesús Santamaría
    • 2
  • Nerea Insausti
    • 1
  • Yerzol Cortés
    • 3
  • Luis Figueras
    • 3
  • Isabel Cuartielles
    • 4
  • Miguel Vila
    • 5
  • Enrique Fantova
    • 4
  • José Luis Gracia Chapullé
    • 5
  1. 1.Department of Animal Pathology, Veterinary FacultyUniversity of ZaragozaSaragossaSpain
  2. 2.Aragon Nanoscience Institute (INA), Department of Chemical EngineeringUniversity of ZaragozaSaragossaSpain
  3. 3.Gabinete Técnico Veterinario (GTV)SaragossaSpain
  4. 4.Equipo Técnico Veterinario Oviaragón S.C.L.SaragossaSpain
  5. 5.Sociedad Cooperativa Limitada Agropecuaria del Sobrarbe (SCLAS)AínsaSpain

Personalised recommendations