Immunologic Research

, Volume 56, Issue 2–3, pp 304–316 | Cite as

Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity

Etio Pathogenesis of Autoimmunity

Abstract

We have examined the neurotoxicity of aluminum in humans and animals under various conditions, following different routes of administration, and provide an overview of the various associated disease states. The literature demonstrates clearly negative impacts of aluminum on the nervous system across the age span. In adults, aluminum exposure can lead to apparently age-related neurological deficits resembling Alzheimer’s and has been linked to this disease and to the Guamanian variant, ALS–PDC. Similar outcomes have been found in animal models. In addition, injection of aluminum adjuvants in an attempt to model Gulf War syndrome and associated neurological deficits leads to an ALS phenotype in young male mice. In young children, a highly significant correlation exists between the number of pediatric aluminum-adjuvanted vaccines administered and the rate of autism spectrum disorders. Many of the features of aluminum-induced neurotoxicity may arise, in part, from autoimmune reactions, as part of the ASIA syndrome.

Keywords

Autism ALS Alzheimer’s Neurodegeneration Immune response 

References

  1. 1.
    Exley C. Aluminium and medicine. In: Merce ALR, Felcman J, Recio MAL, editors. Molecular and supramolecular bioinorganic chemistry: applications in medical sciences. New York: Nova Biomedical Books; 2009. p. 45–68.Google Scholar
  2. 2.
    Carson BL (2000) Aluminum compounds. Review of toxicological literature, Abridged Final Report: 84 p. Integrated Laboratory Systems, Research Triangle Park, North Carolina. http://ntp.niehs.nih.gov/ntp/htdocs/Chem_Background/ExSumpdf/Aluminum.pdf.
  3. 3.
    Exley C, Korchazhkina O, Job D, Strekopytov S, Polwart A, Crome P. Non-invasive therapy to reduce the body burden of aluminium in Alzheimer’s disease. J Alzheimers Dis. 2006; 10(1): 17–24; discussion 29-31.Google Scholar
  4. 4.
    Exley C, House E. Aluminium in the human brain. Monatsh Chem. 2011;142:357–63.CrossRefGoogle Scholar
  5. 5.
    Guillard O, Fauconneau B, Olichon D, Dedieu G, Deloncle R. Hyperaluminemia in a woman using an aluminum-containing antiperspirant for 4 years. Am J Med. 2004;117(12):956–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Lopes MM, Caldas LQA. Young children with autism spectrum disorders: can aluminium body burden cause metabolism disruption? Toxicol Lett. 2011;205S:S60–179.Google Scholar
  7. 7.
    Walton JR. Aluminum in hippocampal neurons from humans with Alzheimer’s disease. Neurotoxicol. 2006;27(3):385–94.CrossRefGoogle Scholar
  8. 8.
    Gies WJ. Some objections to the use of alum baking-powder. JAMA. 1911;57(10):816–21.CrossRefGoogle Scholar
  9. 9.
    Tomljenovic L. Aluminum and alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis. 2011;23(4):567–98.PubMedGoogle Scholar
  10. 10.
    Exley C. Reflections upon and recent insight into the mechanism of formation of hydroxyaluminosilicates and the therapeutic potential of silicic acid. Coord Chem Rev. 2011;256(1–2):82–8.Google Scholar
  11. 11.
    ATSDR (2008) Toxicological profile for aluminum. Agency for toxic substances and disease registry, Atlanta, GA, pp. 357, http://www.atsdr.cdc.gov/toxprofiles/tp22.html, Last.
  12. 12.
    Walton JR, Wang MX. APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. J Inorg Biochem. 2009;103(11):1548–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Burrell SA, Exley C. There is (still) too much aluminium in infant formulas. BMC Pediatr. 2010;10:63.PubMedCrossRefGoogle Scholar
  14. 14.
    Rogers MA, Simon DG. A preliminary study of dietary aluminium intake and risk of Alzheimer’s disease. Age Ageing. 1999;28(2):205–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Exley C. Aluminum in antiperspirants: more than just skin deep. Am J Med. 2004;117(12):969–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Pivnick EK, Kerr NC, Kaufman RA, Jones DP, Chesney RW. Rickets secondary to phosphate depletion. A sequela of antacid use in infancy. Clin Pediatr (Phila). 1995;34(2):73–8.CrossRefGoogle Scholar
  17. 17.
    Dorea JG, Marques RC. Infants’ exposure to aluminum from vaccines and breast milk during the first 6 months. J Exp Sci Environ Epidemiol. 2010;20(7):598–601.CrossRefGoogle Scholar
  18. 18.
    Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorganic Biochem. 2011;105(11):1489–99.CrossRefGoogle Scholar
  19. 19.
    Tomljenovic L, Shaw CA. Aluminum vaccine adjuvants: are they safe? Curr Medl Chem. 2011;18(17):2630–7.CrossRefGoogle Scholar
  20. 20.
    Israeli E, Agmon-Levin N, Blank M, Shoenfeld Y. Adjuvants and autoimmunity. Lupus. 2009;18(13):1217–25.PubMedCrossRefGoogle Scholar
  21. 21.
    Glenney AT, Pope CG, Waddington H, Wallace U. XXIII—the antigenic value of toxoid precipitated by potassium alum. J Pathol Bacteriol. 1926;29:38–9.Google Scholar
  22. 22.
    Authier FJ, Cherin P, Creange A, Bonnotte B, Ferrer X, Abdelmoumni A, Ranoux D, Pelletier J, Figarella-Branger D, Granel B, Maisonobe T, Coquet M, Degos JD, Gherardi RK. Central nervous system disease in patients with macrophagic myofasciitis. Brain. 2001;124(5):974–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Shaw CA, Höglinger GU. Neurodegenerative Diseases: neurotoxins as sufficient etiologic agents? J Neuromolec Med. 2008;10(1):1–9.CrossRefGoogle Scholar
  24. 24.
    Kurland LT. Amyotrophic lateral sclerosis and Parkinson’s disease complex on Guam linked to an environmental neurotoxin. Trends Neurosci. 1988;11(2):51–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Garruto RM, Swyt C, Fiori CE, Yanagihara R, Gadjusek DC. Intraneuronal deposition of calcium and aluminum in amyotrophic lateral sclerosis of Guam. Lancet. 1985;326:1353.CrossRefGoogle Scholar
  26. 26.
    Shoenfeld Y, Agmon-Levin N. ‘ASIA’-Autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun. 2011;36(1):4–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Agmon-Levin N, Hughes G, Shoenfeld Y. The spectrum of ASIA: ‘Autoimmune (Auto-inflammatory) Syndrome induced by adjuvants’. Lupus. 2012;21(2):118–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Fukuda K, Nisenbaum R, Stewart G. Chronic multisymptom illness affecting Air Force veterans of the Gulf War. JAMA. 1998;280:981–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Haley RW, Kurt TL, Hom J. Is there a Gulf War Syndrome? Searching for syndromes by factor analysis of symptoms. JAMA. 1997;277:215–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Fulco CE, Liverman CT, Sox HC. Gulf War and health: volume 1. Depleted uranium, pyridostigmine, bromide, sarin, and vaccines. Institute of Medicine. National Academy Press, 2000, p. 89–168.Google Scholar
  31. 31.
    Shawky S. Depleted uranium: an overview of its properties and health effects. East Mediterr Health J. 2002;8:432–9.PubMedGoogle Scholar
  32. 32.
    Kalra R, Singh SP, Razani-Boroujerdi S. Subclinical doses of the nerve gas sarin impair T cell responses through the autonomic nervous system. Toxicol Appl Pharmacol. 2002;184:82–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Sartin JS. Gulf War illnesses: causes and controversies. Mayo Clin Proc. 2000;75:811–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Abou-Donia MB, Wilmarth KR, Jensen KF, Oehme FW, Kurt TL. Neurotoxicity resulting from co-exposure to pyridostigmine bromide, deet, and permethrin: implications of Gulf War chemical exposures. J Toxicol Environ Health. 1996;48:35–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Kurt TL. Epidemiological association in US veterans between Gulf War illness and exposures to anticholinesterases. Toxicol Lett. 1998;102–103:523–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Hotopf M, David A, Hull L, Ismail K, Unwin C, Wessely S. Role of vaccinations as risk factors for ill health in veterans of the Gulf war: cross sectional study. BMJ. 2000;320:1363–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Ferguson E, Cassaday HJ. Theoretical accounts of Gulf War Syndrome: from environmental toxins to psychoneuroimmunology and neurodegeneration. Behav Neurol Behav Neurol. 2001;13:133–47.Google Scholar
  38. 38.
    Nicolson GL, Nasralla MY, Haier J, Pomfret J. High frequency of systemic mycoplasmal infections in Gulf War veterans and civilians with Amyotrophic Lateral Sclerosis (ALS). J Clin Neurosci. 2002;9(525–529):131.Google Scholar
  39. 39.
    Taylor DN, Sanchez JL, Smoak BL, DeFraites R. Helicobacter pylori infection in Desert Storm troops. Clin Infect Dis. 1997;25:979–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Nass M. Anthrax vaccine. Model of a response to the biologic warfare threat. Infect Dis Clin North Am. 1999;13:VIII187–208.CrossRefGoogle Scholar
  41. 41.
    Unwin C, Blatchley N, Coker W. Health of UK servicemen who served in the Persian Gulf War. Lancet. 1999;353:169–78.PubMedCrossRefGoogle Scholar
  42. 42.
    Salamon R, Verret C, Jutand MA. Health consequences of the first Persian Gulf War on French troops. Int J Epidemiol. 2006;35:479–87.PubMedCrossRefGoogle Scholar
  43. 43.
    Petrik MS, Wong MC, Tabata RC, Garry RF, Shaw CA. Aluminum adjuvant linked to Gulf War illness induces motor neuron death in mice. J Neuromolec Med. 2007;9(1):83–100.CrossRefGoogle Scholar
  44. 44.
    Shaw CA, Petrik MS. Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem. 2009;103(11):1555–62.PubMedCrossRefGoogle Scholar
  45. 45.
    Luján L, Pérez M, Salazar E, Gimeno M, Pinczowski P, Irusta S, Santamaria J, Fantova E, Vila M, Gracia Chapulle, JL (2012) An ovine neurodegenerative syndrome associated to repetitive vaccine administration. 8th international autoimmunity congress. Granada, Spain.Google Scholar
  46. 46.
    Gherardi R, Authier FJ. Macrophagic myofasciitis: characterization and pathophysiology. Lupus. 2012;21(2):184–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Gherardi RK, Coquet M, Cherin P, Belec L, Moretto P, Dreyfus PA, Pellissier JF, Chariot P, Authier FJ. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain. 2001;124(Pt 9):1821–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Perl DP, Brody AR. Alzheimer’s disease: x-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science. 1980;208(4441):297–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Altmann P. Aluminium induced disease in subjects with and without renal failure-does it help us understand the role of aluminium in Alzheimer’s Disease? In: Exley C, editor. Aluminium and Alzheimer’s Disease: The science that describes the link. Amsterdam: Elsevier Science; 2001. p. 1–37.CrossRefGoogle Scholar
  50. 50.
    Alfrey AC. Dialysis encephalopathy. Kidney Int Suppl. 1986;18:S53–7.PubMedGoogle Scholar
  51. 51.
    Flendrig JA, Kruis H, Das HA. Aluminium intoxication: the cause of dialysis dementia? Proc Eur Dial Transplant Assoc. 1976;13:355–68.Google Scholar
  52. 52.
    Wills MR, Savory J. Water content of aluminum, dialysis dementia, and osteomalacia. Environ Health Perspect. 1985;63:141–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Edwardson JA, Candy JM, Ince PG, McArthur FK, Morris CM, Oakley AE, Taylor GA, Bjertness E. (1992) Aluminium accumulation, beta-amyloid deposition and neurofibrillary changes in the central nervous system. Ciba Found Symp 169: 165–179; Discussion 179-185.Google Scholar
  54. 54.
    Harrington CR, Wischik CM, McArthur FK, Taylor GA, Edwardson JA, Candy JM. Alzheimer’s-disease-like changes in tau protein processing: association with aluminium accumulation in brains of renal dialysis patients. Lancet. 1994;343(8904):993–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Flaten TP. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull. 2001;55(2):187–96.PubMedCrossRefGoogle Scholar
  56. 56.
    McLachlan DRC, Bergeron C, Smith JE, Boomer D, Rifat SL. Risk for neuropathologically confirmed Alzheimer’s disease and residual aluminum in municipal drinking water employing weighted residential histories. Neurology. 1996;46(2):401–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF. Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study. Am J Epidemiol. 2000;152(1):59–66.PubMedCrossRefGoogle Scholar
  58. 58.
    Martyn CN, Barker DJ, Osmond C, Harris EC, Edwardson JA, Lacey RF. Geographical relation between Alzheimer’s disease and aluminum in drinking water. Lancet. 1989;1(8629):59–62.PubMedGoogle Scholar
  59. 59.
    Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues JF. Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol. 2009;169(4):489–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Jacqmin-Gadda H, Commenges D, Letenneur L, Dartigues JF. Silica and aluminum in drinking water and cognitive impairment in the elderly. Epidemiol. 1996;7(3):281–5.CrossRefGoogle Scholar
  61. 61.
    Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC. Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res. 2004;75(4):565–72.PubMedCrossRefGoogle Scholar
  62. 62.
    Walton JR. Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicol. 2009;30(2):182–93.CrossRefGoogle Scholar
  63. 63.
    Platt B, Fiddler G, Riedel G, Henderson Z. Aluminium toxicity in the rat brain: histochemical and immunocytochemical evidence. Brain Res Bull. 2001;55(2):257–67.PubMedCrossRefGoogle Scholar
  64. 64.
    Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, Mandell DS, Miller LA, Pinto-Martin J, Reaven J, Reynolds AM, Rice CE, Schendel D, Windham GC. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007;28:235–58.PubMedCrossRefGoogle Scholar
  65. 65.
    King M, Bearman P. Diagnostic change and the increased prevalence of autism. Int J Epidemiol. 2009;38(5):1224–34.PubMedCrossRefGoogle Scholar
  66. 66.
    Newschaffer CJ, Falb MD, Gurney JG. National autism prevalence trends from United States special education data. Pediatrics. 2005;115(3):e277–82.PubMedCrossRefGoogle Scholar
  67. 67.
    Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity in pediatric populations. Lupus. 2012;21(2):223–30.PubMedCrossRefGoogle Scholar
  68. 68.
    Dorea JG. Integrating experimental (in vitro and in vivo) neurotoxicity studies of low-dose thimerosal relevant to vaccines. Neurochem Res. 2011;36(6):927–38.PubMedCrossRefGoogle Scholar
  69. 69.
    Dorea JG, Marques RC, Brandao KG. Neonate exposure to thimerosal mercury from hepatitis B vaccines. Am J Perinatol. 2009;26(7):523–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Bernard S, Enayati A, Redwood L, Roger H, Binstock T. Autism: a novel form of mercury poisoning. Med Hypotheses. 2001;56(4):462–71.PubMedCrossRefGoogle Scholar
  71. 71.
    Geier DA, Geier MR. A meta-analysis epidemiological assessment of neurodevelopmental disorders following vaccines administered from 1994 through 2000 in the United States. Neuro Endocrinol Lett. 2006;27(4):401–13.PubMedGoogle Scholar
  72. 72.
    Young HA, Geier DA, Geier MR. Thimerosal exposure in infants and neurodevelopmental disorders: an assessment of computerized medical records in the Vaccine Safety Datalink. J Neurol Sci. 2008;271(1–2):110–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Hewitson L, Houser LA, Stott C, Sackett G, Tomko JL, Atwood D, Blue L, White ER. Delayed acquisition of neonatal reflexes in newborn primates receiving a thimerosal-containing hepatitis B vaccine: influence of gestational age and birth weight. J Toxicol Environ Health A. 2010;73(19):1298–313.PubMedCrossRefGoogle Scholar
  74. 74.
    Gallagher CM, Goodman MS. Hepatitis B vaccination of male neonates and autism diagnosis, NHIS 1997–2002. J Toxicol Environ Health A. 2010;73(24):1665–77.PubMedCrossRefGoogle Scholar
  75. 75.
    Baylor NW, Egan W, Richman P. Aluminum salts in vaccines-US perspective. Vaccine. 2002;20(Suppl 3):S18–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Rhawn J (1996) Normal and abnormal amygdala development, neuropsychiatry, neuropsychology, and clinical neuroscience. Lippincott Williams & Wilkins.Google Scholar
  77. 77.
    Gunnar MR, Brodersen L, Krueger K, Rigatuso J. Dampening of adrenocortical responses during infancy: normative changes and individual differences. Child Dev. 1996;67(3):877–89.PubMedCrossRefGoogle Scholar
  78. 78.
    Balaban-Gil K, Tuchman R. Epilepsy and epileptiform EEG: association with autism and language disorders. Ment Retard Dev Disabil Res Rev. 2000;6(4):300–8.CrossRefGoogle Scholar
  79. 79.
    Polimeni MA, Richdale AL, Francis AJ. A survey of sleep problems in autism, Asperger’s disorder and typically developing children. J Intellect Disabil Res. 2005;49(Pt 4):260–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Porges SW. The vagus: a mediator of behavioral and physiologic features associated with autism. In: Bauman ML, Kemper TL, editors. The Neurobiology of Autism Baltimore. Maryland: The Johns Hopkins University Press; 2005. p. 65–78.Google Scholar
  81. 81.
    Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.PubMedGoogle Scholar
  82. 82.
    Eickhoff TC, Myers M. Workshop summary. Aluminum in vaccines. Vaccine. 2002;20(Suppl 3):S1–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Couette M, Boisse MF, Maison P, Brugieres P, Cesaro P, Chevalier X, Gherardi RK, Bachoud-Levi AC, Authier FJ. Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction. J Inorg Biochem. 2009;103(11):1571–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Exley C, Swarbrick L, Gherardi RK, Authier FJ. A role for the body burden of aluminium in vaccine-associated macrophagic myofasciitis and chronic fatigue syndrome. Med Hypotheses. 2009;72(2):135–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Zafrir Y, Agmon-Levin N, Paz Z, Shilton T, Shoenfeld Y. Autoimmunity following Hepatitis B vaccine as part of the spectrum of ‘Autoimmune (Auto-inflammatory) Syndrome induced by Adjuvants’ (ASIA): analysis of 93 cases. Lupus. 2012;21(2):146–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Redhead K, Quinlan GJ, Das RG, Gutteridge JM. Aluminium-adjuvanted vaccines transiently increase aluminium levels in murine brain tissue. Pharmacol Toxicol. 1992;70(4):278–80.PubMedCrossRefGoogle Scholar
  87. 87.
    Offit PA, Jew RK. Addressing parents’ concerns: do vaccines contain harmful preservatives, adjuvants, additives, or residuals? Pediatrics. 2003;112(6 Pt 1):1394–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Yokel RA, Hicks CL, Florence RL. Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food Chem Toxicol. 2008;46(6):2261–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Yokel RA, McNamara PJ. Aluminium toxicokinetics: an updated minireview. Pharmacol Toxicol. 2001;88(4):159–67.PubMedCrossRefGoogle Scholar
  90. 90.
    Dillon SB, Demuth SG, Schneider MA, Weston CB, Jones CS, Young JF, Scott M, Bhatnaghar PK, LoCastro S, Hanna N. Induction of protective class I MHC-restricted CTL in mice by a recombinant influenza vaccine in aluminium hydroxide adjuvant. Vaccine. 1992;10(5):309–18.PubMedCrossRefGoogle Scholar
  91. 91.
    Seubert A, Monaci E, Pizza M, O’Hagan DT, Wack A. The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J Immunol. 2008;180(8):5402–12.PubMedGoogle Scholar
  92. 92.
    Quiroz-Rothe EP, Ginel PJ, Pérez J, Lucena R, Rivero JLL. Vaccine-associated acute polyneuropathy resembling Guillain-Barré syndrome in a dog. EJCAP. 2005;15(2):155–9.Google Scholar
  93. 93.
    Batista-Duharte A, Lindblad EB, Oviedo-Orta E. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol Lett. 2011;203(2):97–105.PubMedCrossRefGoogle Scholar
  94. 94.
    Rose NR. Autoimmunity, infection and adjuvants. Lupus. 2010;19(4):354–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Vojdani A, Campbell AW, Anyanwu E, Kashanian A, Bock K, Vojdani E. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J Neuroimmunol. 2002;129(1–2):168–77.PubMedCrossRefGoogle Scholar
  96. 96.
    Banks WA, Kastin AJ. Aluminum-induced neurotoxicity: alterations in membrane function at the blood-brain barrier. Neurosci Biobehav Rev. 1989;13(1):47–53.PubMedCrossRefGoogle Scholar
  97. 97.
    Zheng W. Neurotoxicology of the brain barrier system: new implications. J Toxicol Clin Toxicol. 2001;39(7):711–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Yokel RA. Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis. 2006;10(2–3):223–53.PubMedGoogle Scholar
  99. 99.
    Prat AK, Biernacki K, Wosik K, Antel JP. Glial cell influence on the human blood–brain barrier. Glia. 2001;36:145–55.Google Scholar
  100. 100.
    Aydin H, Ozgul E, Agildere AM. Acute necrotizing encephalopathy secondary to diphtheria, tetanus toxoid and whole-cell pertussis vaccination:diffusion-weighted imaging and proton MR spectroscopy findings. Pediatr Radiol. 2010;40:1281–4.PubMedCrossRefGoogle Scholar
  101. 101.
    Hogenesch H, Azcona-Olivera J, Scott-Moncrieff C, Snyder PW, Glickman LT. Vaccine-induced autoimmunity in the dog. Adv Vet Med. 1999;41:733–47.PubMedCrossRefGoogle Scholar
  102. 102.
    Shoenfeld Y, Aron-Maor A. Vaccination and autoimmunity-’vaccinosis’: a dangerous liaison?”. J Autoimmun. 2000;14(1):1–10.PubMedCrossRefGoogle Scholar
  103. 103.
    Passeri E, Villa C, Maryline C, Itti E, Brugieres P, Cesaro P, Gherardi RK, Bachoud-Levi A-C. Authier F-J (2011) Long-term follow-up of cognitive dysfunction in patients with aluminum hydroxide-induced macrophagic myofasciitis (MMF). J Inorg Biochem. 2011;105(11):1457–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Neural Dynamics Research Group, Department of Ophthalmology and Visual SciencesUniversity of British Columbia (UBC)VancouverCanada
  2. 2.Program in Experimental MedicineUniversity of British Columbia (UBC)VancouverCanada
  3. 3.Program in NeuroscienceUniversity of British Columbia (UBC)VancouverCanada

Personalised recommendations