Advertisement

Immunologic Research

, Volume 56, Issue 1, pp 61–72 | Cite as

Immunisation with foamy virus Bet fusion proteins as novel strategy for HIV-1 epitope delivery

  • Michael Mühle
  • Kerstin Hoffmann
  • Martin Löchelt
  • Joachim Denner
Article

Abstract

The induction of 2F5- and 4E10-like antibodies broadly neutralising HIV-1 and targeting the membrane external proximal region (MPER) of the transmembrane envelope protein gp41 would be a major advancement for the development of a preventive HIV-1 vaccine, but successful attempts remain rare. Recent studies demonstrated that broadly reactive antibodies develop relatively late during infection and after intensive affinity maturation. Therefore, a prolonged antigen delivery might be beneficial to induce them. Replicating foamy viruses which are characterised by apathogenic but persistent infection could represent suitable carrier viruses for this purpose. In order to develop such a system, we modified the accessory foamy virus Bet protein to contain the MPER of gp41, or the MPER linked to the stabilising fusion peptide proximal region of gp41 and analysed here the antigenic and immunogenic properties of such hybrid proteins. The antigens, expressed and purified to homogeneity, were recognised by the monoclonal antibodies 2F5 and 4E10 with nanomolar affinities and induced high levels of antibodies specific to gp41 after immunisation of rats. The antisera also bound to virus particles attached to infected cells, and peptide-based epitope mapping showed that they recognised the 2F5 epitope. Although no HIV-1 neutralising activity was observed, the presented data demonstrate that using the foamy virus Bet for HIV-1 epitope delivery is successfully applicable. Together with the attractive potential for sustained antigen expression after transfer to replicating virus, these results should therefore provide a first basis for the development of chimeric foamy viruses as novel HIV-1 vaccine vectors.

Keywords

HIV-1 Vaccine MPER Foamy virus Bet protein 

Notes

Acknowledgments

This work was supported by the Volkswagenstiftung. We thank C.M. Schmidt, M. Keller and D. Wirths for excellent technical support and A. Bleiholder for critical reading of the manuscript. All authors have approved the final article and declare that there is no conflict of interest.

Supplementary material

12026_2013_8387_MOESM1_ESM.pdf (350 kb)
Supplementary material 1 (PDF 350 kb)
12026_2013_8387_MOESM2_ESM.pdf (117 kb)
Supplementary material 2 (PDF 116 kb)
12026_2013_8387_MOESM3_ESM.pdf (16 kb)
Supplementary material 3 (PDF 16 kb)
12026_2013_8387_MOESM4_ESM.pdf (15 kb)
Supplementary material 4 (PDF 14 kb)
12026_2013_8387_MOESM5_ESM.pdf (108 kb)
Supplementary material 5 (PDF 108 kb)
12026_2013_8387_MOESM6_ESM.pdf (123 kb)
Supplementary material 6 (PDF 122 kb)

References

  1. 1.
    Burton DR, Weiss RA. AIDS/HIV. A boost for HIV vaccine design. Science. 2010;329(5993):770–3. doi: 10.1126/science.1194693.PubMedCrossRefGoogle Scholar
  2. 2.
    Mascola JR, Montefiori DC. The role of antibodies in HIV vaccines. Annu Rev Immunol. 2010;28:413–44. doi: 10.1146/annurev-immunol-030409-101256.PubMedCrossRefGoogle Scholar
  3. 3.
    Burton DR, Stanfield RL, Wilson IA. Antibody vs. HIV in a clash of evolutionary titans. Proc Natl Acad Sci USA. 2005;102(42):14943–8. doi: 10.1073/pnas.0505126102.PubMedCrossRefGoogle Scholar
  4. 4.
    Doria-Rose NA, Klein RM, Manion MM, O’Dell S, Phogat A, Chakrabarti B, et al. Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J Virol. 2009;83(1):188–99. doi: 10.1128/JVI.01583-08.PubMedCrossRefGoogle Scholar
  5. 5.
    Gray ES, Madiga MC, Hermanus T, Moore PL, Wibmer CK, Tumba NL, et al. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4 + T cell decline and high viral load during acute infection. J Virol. 2011;85(10):4828–40. doi: 10.1128/JVI.00198-11.PubMedCrossRefGoogle Scholar
  6. 6.
    Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol. 2012;30(5):423–33. doi: 10.1038/nbt.2197.PubMedCrossRefGoogle Scholar
  7. 7.
    McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol. 2010;10(1):11–23. doi: 10.1038/nri2674.PubMedCrossRefGoogle Scholar
  8. 8.
    Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, Moore JP, et al. HIV vaccine design and the neutralizing antibody problem. Nat Immunol. 2004;5(3):233–6. doi: 10.1038/ni0304-233.PubMedCrossRefGoogle Scholar
  9. 9.
    Moody MA, Yates NL, Amos JD, Drinker MS, Eudailey JA, Gurley TC, et al. HIV-1 gp120 Vaccine Induces Affinity Maturation in both New and Persistent Antibody Clonal Lineages. J Virol. 2012;86(14):7496–507. doi: 10.1128/JVI.00426-12.PubMedCrossRefGoogle Scholar
  10. 10.
    Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature. 2011;473(7348):523–7. doi: 10.1038/nature10003.PubMedCrossRefGoogle Scholar
  11. 11.
    Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond DD, et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med. 2009;15(3):293–9. doi: 10.1038/nm.1935.PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson RP, Desrosiers RC. Protective immunity induced by live attenuated simian immunodeficiency virus. Curr Opin Immunol. 1998;10(4):436–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Koff WC, Johnson PR, Watkins DI, Burton DR, Lifson JD, Hasenkrug KJ, et al. HIV vaccine design: insights from live attenuated SIV vaccines. Nat Immunol. 2006;7(1):19–23. doi: 10.1038/ni1296.PubMedCrossRefGoogle Scholar
  14. 14.
    Picker LJ, Hansen SG, Lifson JD. New paradigms for HIV/AIDS vaccine development. Annu Rev Med. 2012;63:95–111. doi: 10.1146/annurev-med-042010-085643.PubMedCrossRefGoogle Scholar
  15. 15.
    Lindemann D, Rethwilm A. Foamy virus biology and its application for vector development. Viruses. 2011;3(5):561–85. doi: 10.3390/v3050561.PubMedCrossRefGoogle Scholar
  16. 16.
    Linial ML. Foamy viruses are unconventional retroviruses. J Virol. 1999;73(3):1747–55.PubMedGoogle Scholar
  17. 17.
    Rethwilm A. The replication strategy of foamy viruses. Curr Top Microbiol Immunol. 2003;277:1–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R, et al. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci USA. 2006;103(5):1498–503. doi: 10.1073/pnas.0510046103.PubMedCrossRefGoogle Scholar
  19. 19.
    Bauer TR Jr, Olson EM, Huo Y, Tuschong LM, Allen JM, Li Y, et al. Treatment of canine leukocyte adhesion deficiency by foamy virus vectors expressing CD18 from a PGK promoter. Gene Ther. 2011;18(6):553–9. doi: 10.1038/gt.2010.169.PubMedCrossRefGoogle Scholar
  20. 20.
    Erlwein O, McClure MO. Progress and prospects: foamy virus vectors enter a new age. Gene Ther. 2010;17(12):1423–9. doi: 10.1038/gt.2010.95.PubMedCrossRefGoogle Scholar
  21. 21.
    Taylor JA, Vojtech L, Bahner I, Kohn DB, Laer DV, Russell DW, et al. Foamy virus vectors expressing anti-HIV transgenes efficiently block HIV-1 replication. Mol Ther. 2008;16(1):46–51. doi: 10.1038/sj.mt.6300335.PubMedCrossRefGoogle Scholar
  22. 22.
    Trobridge GD. Foamy virus vectors for gene transfer. Expert Opin Biol Ther. 2009;9(11):1427–36. doi: 10.1517/14712590903246388.PubMedCrossRefGoogle Scholar
  23. 23.
    Bastone P, Romen F, Liu W, Wirtz R, Koch U, Josephson N, et al. Construction and characterization of efficient, stable and safe replication-deficient foamy virus vectors. Gene Ther. 2007;14(7):613–20. doi: 10.1038/sj.gt.3302890.PubMedCrossRefGoogle Scholar
  24. 24.
    Schwantes A, Ortlepp I, Löchelt M. Construction and functional characterization of feline foamy virus-based retroviral vectors. Virology. 2002;301(1):53–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Schwantes A, Truyen U, Weikel J, Weiss C, Löchelt M. Application of chimeric feline foamy virus-based retroviral vectors for the induction of antiviral immunity in cats. J Virol. 2003;77(14):7830–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Zemba M, Alke A, Bodem J, Winkler IG, Flower RL, Pfrepper K, et al. Construction of infectious feline foamy virus genomes: cat antisera do not cross-neutralize feline foamy virus chimera with serotype-specific Env sequences. Virology. 2000;266(1):150–6. doi: 10.1006/viro.1999.0037.PubMedCrossRefGoogle Scholar
  27. 27.
    Alke A, Schwantes A, Zemba M, Flügel RM, Löchelt M. Characterization of the humoral immune response and virus replication in cats experimentally infected with feline foamy virus. Virology. 2000;275(1):170–6. doi: 10.1006/viro.2000.0537.PubMedCrossRefGoogle Scholar
  28. 28.
    Bleiholder A, Mühle M, Hechler T, Bevins S, vandeWoude S, Denner J, et al. Pattern of seroreactivity against feline foamy virus proteins in domestic cats from Germany. Vet Immunol Immunopathol. 2011;143(3–4):292–300. doi: 10.1016/j.vetimm.2011.06.007.PubMedCrossRefGoogle Scholar
  29. 29.
    Romen F, Pawlita M, Sehr P, Bachmann S, Schroder J, Lutz H, et al. Antibodies against Gag are diagnostic markers for feline foamy virus infections while Env and Bet reactivity is undetectable in a substantial fraction of infected cats. Virology. 2006;345(2):502–8. doi: 10.1016/j.virol.2005.10.022.PubMedCrossRefGoogle Scholar
  30. 30.
    Giron ML, de The H, Saib A. An evolutionarily conserved splice generates a secreted env-Bet fusion protein during human foamy virus infection. J Virol. 1998;72(6):4906–10.PubMedGoogle Scholar
  31. 31.
    Lecellier CH, Vermeulen W, Bachelerie F, Giron ML, Saib A. Intra- and intercellular trafficking of the foamy virus auxiliary bet protein. J Virol. 2002;76(7):3388–94.PubMedCrossRefGoogle Scholar
  32. 32.
    Montero M, van Houten NE, Wang X, Scott JK. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev. 2008;72(1):54–84, table of contents. doi: 10.1128/MMBR.00020-07.
  33. 33.
    Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G, et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol. 1993;67(11):6642–7.PubMedGoogle Scholar
  34. 34.
    Salzwedel K, West JT, Hunter E. A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J Virol. 1999;73(3):2469–80.PubMedGoogle Scholar
  35. 35.
    Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol. 2001;75(22):10892–905. doi: 10.1128/JVI.75.22.10892-10905.2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Biron Z, Khare S, Samson AO, Hayek Y, Naider F, Anglister J. A monomeric 3(10)-helix is formed in water by a 13-residue peptide representing the neutralizing determinant of HIV-1 on gp41. Biochemistry. 2002;41(42):12687–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Bryson S, Julien JP, Isenman DE, Kunert R, Katinger H, Pai EF. Crystal structure of the complex between the F(ab)’ fragment of the cross-neutralizing anti-HIV-1 antibody 2F5 and the F(ab) fragment of its anti-idiotypic antibody 3H6. J Mol Biol. 2008;382(4):910–9. doi: 10.1016/j.jmb.2008.07.057.PubMedCrossRefGoogle Scholar
  38. 38.
    Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, Weissenhorn W. Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. PLoS Pathog. 2010;6(5):e1000880. doi: 10.1371/journal.ppat.1000880.PubMedCrossRefGoogle Scholar
  39. 39.
    Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R, et al. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J Virol. 2004;78(19):10724–37. doi: 10.1128/JVI.78.19.10724-10737.2004.PubMedCrossRefGoogle Scholar
  40. 40.
    Schibli DJ, Montelaro RC, Vogel HJ. The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. Biochemistry. 2001;40(32):9570–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Sun ZY, Oh KJ, Kim M, Yu J, Brusic V, Song L, et al. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity. 2008;28(1):52–63. doi: 10.1016/j.immuni.2007.11.018.PubMedCrossRefGoogle Scholar
  42. 42.
    Alam SM, Morelli M, Dennison SM, Liao HX, Zhang R, Xia SM, et al. Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc Natl Acad Sci USA. 2009;106(48):20234–9. doi: 10.1073/pnas.0908713106.PubMedCrossRefGoogle Scholar
  43. 43.
    Scherer EM, Leaman DP, Zwick MB, McMichael AJ, Burton DR. Aromatic residues at the edge of the antibody combining site facilitate viral glycoprotein recognition through membrane interactions. Proc Natl Acad Sci USA. 2010;107(4):1529–34. doi: 10.1073/pnas.0909680107.PubMedCrossRefGoogle Scholar
  44. 44.
    Julien JP, Bryson S, Nieva JL, Pai EF. Structural details of HIV-1 recognition by the broadly neutralizing monoclonal antibody 2F5: epitope conformation, antigen-recognition loop mobility, and anion-binding site. J Mol Biol. 2008;384(2):377–92. doi: 10.1016/j.jmb.2008.09.024.PubMedCrossRefGoogle Scholar
  45. 45.
    Coeffier E, Clement JM, Cussac V, Khodaei-Boorane N, Jehanno M, Rojas M, et al. Antigenicity and immunogenicity of the HIV-1 gp41 epitope ELDKWA inserted into permissive sites of the MalE protein. Vaccine. 2000;19(7–8):684–93.PubMedCrossRefGoogle Scholar
  46. 46.
    Ho J, MacDonald KS, Barber BH. Construction of recombinant targeting immunogens incorporating an HIV-1 neutralizing epitope into sites of differing conformational constraint. Vaccine. 2002;20(7–8):1169–80.PubMedCrossRefGoogle Scholar
  47. 47.
    Ho J, Uger RA, Zwick MB, Luscher MA, Barber BH, MacDonald KS. Conformational constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity but not neutralizing response. Vaccine. 2005;23(13):1559–73. doi: 10.1016/j.vaccine.2004.09.037.PubMedCrossRefGoogle Scholar
  48. 48.
    McGaughey GB, Citron M, Danzeisen RC, Freidinger RM, Garsky VM, Hurni WM, et al. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb. Biochemistry. 2003;42(11):3214–23. doi: 10.1021/bi026952u.PubMedCrossRefGoogle Scholar
  49. 49.
    Brunel FM, Zwick MB, Cardoso RM, Nelson JD, Wilson IA, Burton DR, et al. Structure-function analysis of the epitope for 4E10, a broadly neutralizing human immunodeficiency virus type 1 antibody. J Virol. 2006;80(4):1680–7. doi: 10.1128/JVI.80.4.1680-1687.2006.PubMedCrossRefGoogle Scholar
  50. 50.
    Cardoso RM, Brunel FM, Ferguson S, Zwick M, Burton DR, Dawson PE, et al. Structural basis of enhanced binding of extended and helically constrained peptide epitopes of the broadly neutralizing HIV-1 antibody 4E10. J Mol Biol. 2007;365(5):1533–44. doi: 10.1016/j.jmb.2006.10.088.PubMedCrossRefGoogle Scholar
  51. 51.
    Cardoso RM, Zwick MB, Stanfield RL, Kunert R, Binley JM, Katinger H, et al. Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity. 2005;22(2):163–73. doi: 10.1016/j.immuni.2004.12.011.PubMedCrossRefGoogle Scholar
  52. 52.
    Bellamy-McIntyre AK, Lay CS, Baar S, Maerz AL, Talbo GH, Drummer HE, et al. Functional links between the fusion peptide-proximal polar segment and membrane-proximal region of human immunodeficiency virus gp41 in distinct phases of membrane fusion. J Biol Chem. 2007;282(32):23104–16. doi: 10.1074/jbc.M703485200.PubMedCrossRefGoogle Scholar
  53. 53.
    Fiebig U, Schmolke M, Eschricht M, Kurth R, Denner J. Mode of interaction between the HIV-1-neutralizing monoclonal antibody 2F5 and its epitope. AIDS. 2009;23(8):887–95. doi: 10.1097/QAD.0b013e3283292153.PubMedCrossRefGoogle Scholar
  54. 54.
    Lorizate M, Gomara MJ, de la Torre BG, Andreu D, Nieva JL. Membrane-transferring sequences of the HIV-1 Gp41 ectodomain assemble into an immunogenic complex. J Mol Biol. 2006;360(1):45–55. doi: 10.1016/j.jmb.2006.04.056.PubMedCrossRefGoogle Scholar
  55. 55.
    Noah E, Biron Z, Naider F, Arshava B, Anglister J. The membrane proximal external region of the HIV-1 envelope glycoprotein gp41 contributes to the stabilization of the six-helix bundle formed with a matching N’ peptide. Biochemistry. 2008;47(26):6782–92. doi: 10.1021/bi7023139.PubMedCrossRefGoogle Scholar
  56. 56.
    de la Arada I, Julien JP, de la Torre BG, Huarte N, Andreu D, Pai EF, et al. Structural constraints imposed by the conserved fusion peptide on the HIV-1 gp41 epitope recognized by the broadly neutralizing antibody 2F5. J Phys Chem B. 2009;113(41):13626–37. doi: 10.1021/jp905965h.PubMedCrossRefGoogle Scholar
  57. 57.
    Lorizate M, de la Arada I, Huarte N, Sanchez-Martinez S, de la Torre BG, Andreu D, et al. Structural analysis and assembly of the HIV-1 Gp41 amino-terminal fusion peptide and the pretransmembrane amphipathic-at-interface sequence. Biochemistry. 2006;45(48):14337–46. doi: 10.1021/bi0612521.PubMedCrossRefGoogle Scholar
  58. 58.
    Mühle M, Löchelt M, Denner J. Optimisation of expression and purification of the feline and primate foamy virus transmembrane envelope proteins using a 96 deep well screen. Protein Expr Purif. 2012;81(1):96–105. doi: 10.1016/j.pep.2011.09.006.PubMedCrossRefGoogle Scholar
  59. 59.
    Frey A, Di Canzio J, Zurakowski D. A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods. 1998;221(1–2):35–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Mühle M, Bleiholder A, Kolb S, Hübner J, Löchelt M, Denner J. Immunological properties of the transmembrane envelope protein of the feline foamy virus and its use for serological screening. Virology. 2011;412(2):333–40. doi: 10.1016/j.virol.2011.01.023.PubMedCrossRefGoogle Scholar
  61. 61.
    Fezoui Y, Weaver DL, Osterhout JJ. De novo design and structural characterization of an alpha-helical hairpin peptide: a model system for the study of protein folding intermediates. Proc Natl Acad Sci USA. 1994;91(9):3675–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Fezoui Y, Connolly PJ, Osterhout JJ. Solution structure of alpha t alpha, a helical hairpin peptide of de novo design. Protein Sci. 1997;6(9):1869–77. doi: 10.1002/pro.5560060907.PubMedCrossRefGoogle Scholar
  63. 63.
    Gallo SA, Finnegan CM, Viard M, Raviv Y, Dimitrov A, Rawat SS, et al. The HIV Env-mediated fusion reaction. Biochim Biophys Acta. 2003;1614(1):36–50.PubMedCrossRefGoogle Scholar
  64. 64.
    Zwick MB, Jensen R, Church S, Wang M, Stiegler G, Kunert R, et al. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J Virol. 2005;79(2):1252–61. doi: 10.1128/JVI.79.2.1252-1261.2005.PubMedCrossRefGoogle Scholar
  65. 65.
    Frey G, Chen J, Rits-Volloch S, Freeman MM, Zolla-Pazner S, Chen B. Distinct conformational states of HIV-1 gp41 are recognized by neutralizing and non-neutralizing antibodies. Nat Struct Mol Biol. 2010;17(12):1486–91. doi: 10.1038/nsmb.1950.PubMedCrossRefGoogle Scholar
  66. 66.
    Frey G, Peng H, Rits-Volloch S, Morelli M, Cheng Y, Chen B. A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc Natl Acad Sci USA. 2008;105(10):3739–44. doi: 10.1073/pnas.0800255105.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhu Z, Qin HR, Chen W, Zhao Q, Shen X, Schutte R, et al. Cross-reactive HIV-1-neutralizing human monoclonal antibodies identified from a patient with 2F5-like antibodies. J Virol. 2011;85(21):11401–8. doi: 10.1128/JVI.05312-11.PubMedCrossRefGoogle Scholar
  68. 68.
    Guenaga J, Dosenovic P, Ofek G, Baker D, Schief WR, Kwong PD, et al. Heterologous epitope-scaffold prime: boosting immuno-focuses B cell responses to the HIV-1 gp41 2F5 neutralization determinant. PLoS ONE. 2011;6(1):e16074. doi: 10.1371/journal.pone.0016074.PubMedCrossRefGoogle Scholar
  69. 69.
    Ofek G, Guenaga FJ, Schief WR, Skinner J, Baker D, Wyatt R, et al. Elicitation of structure-specific antibodies by epitope scaffolds. Proc Natl Acad Sci USA. 2010;107(42):17880–7. doi: 10.1073/pnas.1004728107.PubMedCrossRefGoogle Scholar
  70. 70.
    McGaughey GB, Barbato G, Bianchi E, Freidinger RM, Garsky VM, Hurni WM, et al. Progress towards the development of a HIV-1 gp41-directed vaccine. Curr HIV Res. 2004;2(2):193–204.PubMedCrossRefGoogle Scholar
  71. 71.
    Wang J, Tong P, Lu L, Zhou L, Xu L, Jiang S, et al. HIV-1 gp41 core with exposed membrane-proximal external region inducing broad HIV-1 neutralizing antibodies. PLoS ONE. 2011;6(3):e18233. doi: 10.1371/journal.pone.0018233.PubMedCrossRefGoogle Scholar
  72. 72.
    Garrity RR, Rimmelzwaan G, Minassian A, Tsai WP, Lin G, de Jong JJ, et al. Refocusing neutralizing antibody response by targeted dampening of an immunodominant epitope. J Immunol. 1997;159(1):279–89.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michael Mühle
    • 1
  • Kerstin Hoffmann
    • 1
  • Martin Löchelt
    • 2
  • Joachim Denner
    • 1
  1. 1.Center for HIV and RetrovirologyRobert Koch InstituteBerlinGermany
  2. 2.Division Genome Modifications and Carcinogenesis, Research Topic Infection and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations