Immunologic Research

, Volume 54, Issue 1–3, pp 14–24

Working out mechanisms of controlled/physiologic inflammation in the GI tract

Immunology at Mount Sinai


The mucosal immune system is distinct from its systemic counterpart by virtue of its enormous antigenic exposure (commensal flora, food antigen, pathogens). Despite this, the mucosal immune system maintains a response defined as controlled or physiologic inflammation. This is regulated by many different mechanisms, among which there are physical, cellular and soluble factors. Our laboratory has focused on unique Tregs in the gut controlled by, in one instance, intestinal epithelial cells that serve as non-professional antigen-presenting cells. We believe that intestinal epithelial cells, expressing classical and non-classical MHC molecules, serve to activate Tregs and thus maintain controlled or physiologic inflammation. In this review, we describe regulatory cytokines and T cells that are one part of the emphasis of our laboratory.


Mucosal immunity Oral tolerance Lamina propria lymphocytes Tregs Epithelium 


  1. 1.
    Vighi G, Marcucci F, Sensi L, Di Cara G, Frati F. Allergy and the gastrointestinal system. Clin Exp Immunol. 2008;153(Suppl 1):3–6.PubMedGoogle Scholar
  2. 2.
    Bouhet S, Oswald IP. The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. Vet Immunol Immunopathol. 2005;108(1–2):199–209.PubMedGoogle Scholar
  3. 3.
    Blumberg RS. Current concepts in mucosal immunity. II. One size fits all: nonclassical MHC molecules fulfill multiple roles in epithelial cell function. Am J Physiol. 1998;274(2 Pt 1):G227-31.Google Scholar
  4. 4.
    Zimmerman NP, Vongsa RA, Wendt MK, Dwinell MB. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm Bowel Dis. 2008;14(7):1000–11.PubMedGoogle Scholar
  5. 5.
    Wyatt J, Oberhuber G, Pongratz S, Puspok A, Moser G, Novacek G, et al. Increased gastric and intestinal permeability in patients with crohn’s disease. Am J Gastroenterol. 1997;92(10):1891–6.PubMedGoogle Scholar
  6. 6.
    McKay DM, Singh PK. Superantigen activation of immune cells evokes epithelial (T84) transport and barrier abnormalities via IFN-gamma and TNF alpha: Inhibition of increased permeability, but not diminished secretory responses by TGF-beta2. J Immunol. 1997;159(5):2382–90.PubMedGoogle Scholar
  7. 7.
    Soderholm JD, Peterson KH, Olaison G, Franzen LE, Westrom B, Magnusson KE, et al. Epithelial permeability to proteins in the noninflamed ileum of crohn’s disease? Gastroenterology. 1999;117(1):65–72.Google Scholar
  8. 8.
    Kerr SW, Wolyniec WW, Filipovic Z, Nodop SG, Braza F, Winquist RJ, et al. Repeated measurement of intestinal permeability as an assessment of colitis severity in HLA-B27 transgenic rats. J Pharmacol Exp Ther. 1999;291(2):903–10.PubMedGoogle Scholar
  9. 9.
    Jang MH, Kweon MN, Iwatani K, Yamamoto M, Terahara K, Sasakawa C, et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci USA. 2004;101(16):6110–5.PubMedGoogle Scholar
  10. 10.
    Gebert A, Steinmetz I, Fassbender S, Wendlandt KH. Antigen transport into peyer’s patches: increased uptake by constant numbers of M cells. Am J Pathol. 2004;164(1):65–72.PubMedGoogle Scholar
  11. 11.
    Fleeton MN, Contractor N, Leon F, Wetzel JD, Dermody TS, Kelsall BL. Peyer’s patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J Exp Med. 2004;200(2):235–45.PubMedGoogle Scholar
  12. 12.
    Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005;307(5707):254–8.PubMedGoogle Scholar
  13. 13.
    Putnam AL, Brusko TM, Lee MR, Liu W, Szot GL, Ghosh T, et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes. 2009;58(3):652–62.PubMedGoogle Scholar
  14. 14.
    Kuklin NA, Rott L, Darling J, Campbell JJ, Franco M, Feng N, et al. Alpha(4)beta(7) independent pathway for CD8(+) T cell-mediated intestinal immunity to rotavirus. J Clin Invest. 2000;106(12):1541–52.PubMedGoogle Scholar
  15. 15.
    Meuer SC, Autschbach F, Schurmann G, Golling M, Braunstein J, Qiao L. Molecular mechanisms securing “unresponsiveness” in lamina propria T lymphocytes. Ann N Y Acad Sci. 1996;13(778):174–84.Google Scholar
  16. 16.
    Boirivant M, Pica R, DeMaria R, Testi R, Pallone F, Strober W. Stimulated human lamina propria T cells manifest enhanced fas-mediated apoptosis. J Clin Invest. 1996;98(11):2616–22.PubMedGoogle Scholar
  17. 17.
    Qiao L, Braunstein J, Golling M, Schurmann G, Autschbach F, Moller P, et al. Differential regulation of human T cell responsiveness by mucosal versus blood monocytes. Eur J Immunol. 1996;26(4):922–7.PubMedGoogle Scholar
  18. 18.
    Rescigno M, Lopatin U, Chieppa M. Interactions among dendritic cells, macrophages, and epithelial cells in the gut: Implications for immune tolerance. Curr Opin Immunol. 2008;20(6):669–75.PubMedGoogle Scholar
  19. 19.
    Macpherson AJ, Slack E. The functional interactions of commensal bacteria with intestinal secretory IgA. Curr Opin Gastroenterol. 2007;23(6):673–8.PubMedGoogle Scholar
  20. 20.
    Cerutti A, Chen K, Chorny A. Immunoglobulin responses at the mucosal interface. Annu Rev Immunol. 2011;23(29):273–93.Google Scholar
  21. 21.
    Arnett HA, Viney JL. Gatekeepers of intestinal inflammation. Inflamm Res. 2010;59(1):1–14.PubMedGoogle Scholar
  22. 22.
    Fearns C, Kravchenko VV, Ulevitch RJ, Loskutoff DJ. Murine CD14 gene expression in vivo: Extramyeloid synthesis and regulation by lipopolysaccharide. J Exp Med. 1995;181(3):857–66.PubMedGoogle Scholar
  23. 23.
    Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol. 2001;167(4):1882–5.PubMedGoogle Scholar
  24. 24.
    Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82(1–2):85–91.PubMedGoogle Scholar
  25. 25.
    Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700.PubMedGoogle Scholar
  26. 26.
    Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342(18):1350–8.PubMedGoogle Scholar
  27. 27.
    Annes JP, Chen Y, Munger JS, Rifkin DB. Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol. 2004;165(5):723–34.PubMedGoogle Scholar
  28. 28.
    Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 1999;18(5):1280–91.PubMedGoogle Scholar
  29. 29.
    Monteleone G, Boirivant M, Pallone F, MacDonald TT. TGF-beta1 and Smad7 in the regulation of IBD. Mucosal Immunol. 2008;1(Suppl 1):S50–3.PubMedGoogle Scholar
  30. 30.
    Santibanez JF, Quintanilla M, Bernabeu C. TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2011;121(6):233–51.Google Scholar
  31. 31.
    Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31(6):220–7.PubMedGoogle Scholar
  32. 32.
    Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.PubMedGoogle Scholar
  33. 33.
    Islam KB, Nilsson L, Sideras P, Hammarstrom L, Smith CI. TGF-beta 1 induces germ-line transcripts of both IgA subclasses in human B lymphocytes. Int Immunol. 1991;3(11):1099–106.PubMedGoogle Scholar
  34. 34.
    Cazac BB, Roes J. TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity. 2000;13(4):443–51.PubMedGoogle Scholar
  35. 35.
    Kaminski DA, Stavnezer J. Enhanced IgA class switching in marginal zone and B1 B cells relative to follicular/B2 B cells. J Immunol. 2006;177(9):6025–9.PubMedGoogle Scholar
  36. 36.
    Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity. 2006;25(3):455–71.PubMedGoogle Scholar
  37. 37.
    Borkowski TA, Letterio JJ, Farr AG, Udey MC. A role for endogenous transforming growth factor beta 1 in langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal langerhans cells. J Exp Med. 1996;184(6):2417–22.PubMedGoogle Scholar
  38. 38.
    Hong S, Lee HJ, Kim SJ, Hahm KB. Connection between inflammation and carcinogenesis in gastrointestinal tract: Focus on TGF-beta signaling. World J Gastroenterol. 2010;16(17):2080–93.PubMedGoogle Scholar
  39. 39.
    Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359(6397):693–9.PubMedGoogle Scholar
  40. 40.
    Kulkarni AB, Ward JM, Yaswen L, Mackall CL, Bauer SR, Huh CG, et al. Transforming growth factor-beta 1 null mice. an animal model for inflammatory disorders. Am J Pathol. 1995;146(1):264–75.PubMedGoogle Scholar
  41. 41.
    Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity. 2000;12(2):171–81.PubMedGoogle Scholar
  42. 42.
    Di Sabatino A, Pickard KM, Rampton D, Kruidenier L, Rovedatti L, Leakey NA, et al. Blockade of transforming growth factor beta upregulates T-box transcription factor T-bet, and increases T helper cell type 1 cytokine and matrix metalloproteinase-3 production in the human gut mucosa. Gut. 2008;57(5):605–12.PubMedGoogle Scholar
  43. 43.
    Babyatsky MW, Rossiter G, Podolsky DK. Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology. 1996;110(4):975–84.PubMedGoogle Scholar
  44. 44.
    Donnelly RP, Dickensheets H, Finbloom DS. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J Interferon Cytokine Res. 1999;19(6):563–73.PubMedGoogle Scholar
  45. 45.
    Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.PubMedGoogle Scholar
  46. 46.
    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–74.PubMedGoogle Scholar
  47. 47.
    Spencer SD, Di Marco F, Hooley J, Pitts-Meek S, Bauer M, Ryan AM, et al. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med. 1998;187(4):571–8.PubMedGoogle Scholar
  48. 48.
    Davidson NJ, Leach MW, Fort MM, Thompson-Snipes L, Kuhn R, Muller W, et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J Exp Med. 1996;184(1):241–51.PubMedGoogle Scholar
  49. 49.
    Asseman C, Read S, Powrie F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. J Immunol. 2003;171(2):971–8.PubMedGoogle Scholar
  50. 50.
    Kullberg MC, Ward JM, Gorelick PL, Caspar P, Hieny S, Cheever A, et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect Immunol. 1998;66(11):5157–66.Google Scholar
  51. 51.
    Liu H, Hu B, Xu D, Liew FY. CD4+ CD25+ regulatory T cells cure murine colitis: the role of IL-10, TGF-beta, and CTLA4. J Immunol. 2003;171(10):5012–7.PubMedGoogle Scholar
  52. 52.
    Suri-Payer E, Cantor H. Differential cytokine requirements for regulation of autoimmune gastritis and colitis by CD4(+)CD25(+) T cells. J Autoimmun. 2001;16(2):115–23.PubMedGoogle Scholar
  53. 53.
    O’Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C. Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev. 2008;223:114–31.PubMedGoogle Scholar
  54. 54.
    Akira S. Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells. 1999;17(3):138–46.PubMedGoogle Scholar
  55. 55.
    Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I, et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity. 1999;10(1):39–49.PubMedGoogle Scholar
  56. 56.
    Liu X, Lee YS, Yu CR, Egwuagu CE. Loss of STAT3 in CD4 + T cells prevents development of experimental autoimmune diseases. J Immunol. 2008;180(9):6070–6.PubMedGoogle Scholar
  57. 57.
    Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1994;1(7):553–62.PubMedGoogle Scholar
  58. 58.
    Hagenbaugh A, Sharma S, Dubinett SM, Wei SH, Aranda R, Cheroutre H, et al. Altered immune responses in interleukin 10 transgenic mice. J Exp Med. 1997;185(12):2101–10.PubMedGoogle Scholar
  59. 59.
    Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. Treatment of murine colitis by lactococcus lactis secreting interleukin-10. Science. 2000;289(5483):1352–5.PubMedGoogle Scholar
  60. 60.
    Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.PubMedGoogle Scholar
  61. 61.
    Plevy SE, Targan SR. Future therapeutic approaches for inflammatory bowel diseases. Gastroenterology. 2011;140(6):1838–46.PubMedGoogle Scholar
  62. 62.
    Allez M, Mayer L. Regulatory T cells: peace keepers in the gut. Inflamm Bowel Dis. 2004;10(5):666–76.PubMedGoogle Scholar
  63. 63.
    Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology. 1970;18(5):723–37.PubMedGoogle Scholar
  64. 64.
    Sakaguchi S, Sakaguchi N. Thymus and autoimmunity transplantation of the thymus from cyclosporin A-treated mice causes organ-specific autoimmune disease in athymic nude mice. J Exp Med. 1988;167(4):1479–85.PubMedGoogle Scholar
  65. 65.
    Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, et al. Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol. 1998;10(12):1969–80.PubMedGoogle Scholar
  66. 66.
    Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.PubMedGoogle Scholar
  67. 67.
    Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4 + CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86.PubMedGoogle Scholar
  68. 68.
    Park HB, Paik DJ, Jang E, Hong S, Youn J. Acquisition of anergic and suppressive activities in transforming growth factor-beta-costimulated CD4+ CD25- T cells. Int Immunol. 2004;16(8):1203–13.PubMedGoogle Scholar
  69. 69.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6.PubMedGoogle Scholar
  70. 70.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.PubMedGoogle Scholar
  71. 71.
    Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for scurfin in CD4+ CD25+ T regulatory cells. Nat Immunol. 2003;4(4):337–42.PubMedGoogle Scholar
  72. 72.
    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–1.PubMedGoogle Scholar
  73. 73.
    Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol. 2003;15(4):430–5.PubMedGoogle Scholar
  74. 74.
    Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27(1):18–20.PubMedGoogle Scholar
  75. 75.
    Allan SE, Alstad AN, Merindol N, Crellin NK, Amendola M, Bacchetta R, et al. Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FOXP3. Mol Ther. 2008;16(1):194–202.PubMedGoogle Scholar
  76. 76.
    Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128(7):1868–78.PubMedGoogle Scholar
  77. 77.
    Uhlig HH, Coombes J, Mottet C, Izcue A, Thompson C, Fanger A, et al. Characterization of Foxp3+ CD4+ CD25+ and IL-10-secreting CD4+ CD25+ T cells during cure of colitis. J Immunol. 2006;177(9):5852–60.PubMedGoogle Scholar
  78. 78.
    Tiittanen M, Westerholm-Ormio M, Verkasalo M, Savilahti E, Vaarala O. Infiltration of forkhead box P3-expressing cells in small intestinal mucosa in coeliac disease but not in type 1 diabetes. Clin Exp Immunol. 2008;152(3):498–507.PubMedGoogle Scholar
  79. 79.
    Saruta M, Yu QT, Fleshner PR, Mantel PY, Schmidt-Weber CB, Banham AH, et al. Characterization of FOXP3+ CD4+ regulatory T cells in crohn’s disease. Clin Immunol. 2007;125(3):281–90.PubMedGoogle Scholar
  80. 80.
    Yu QT, Saruta M, Avanesyan A, Fleshner PR, Banham AH, Papadakis KA. Expression and functional characterization of FOXP3+ CD4+ regulatory T cells in ulcerative colitis. Inflamm Bowel Dis. 2007;13(2):191–9.PubMedGoogle Scholar
  81. 81.
    Thornton AM, Piccirillo CA, Shevach EM. Activation requirements for the induction of CD4+ CD25+ T cell suppressor function. Eur J Immunol. 2004;34(2):366–76.PubMedGoogle Scholar
  82. 82.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757–64.PubMedGoogle Scholar
  83. 83.
    Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med. 2007;204(8):1775–85.PubMedGoogle Scholar
  84. 84.
    Saurer L, Mueller C. T cell-mediated immunoregulation in the gastrointestinal tract. Allergy. 2009;64(4):505–19.PubMedGoogle Scholar
  85. 85.
    Ji HB, Liao G, Faubion WA, Abadia-Molina AC, Cozzo C, Laroux FS, et al. Cutting edge: The natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J Immunol. 2004;172(10):5823–7.PubMedGoogle Scholar
  86. 86.
    Nocentini G, Riccardi C. GITR: A multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol. 2005;35(4):1016–22.PubMedGoogle Scholar
  87. 87.
    Oppenheim JJ, Feldmann M, Durum SK. Cytokine reference: a compendium of cytokines and other mediators of host defense. San Diego: Academic Press; 2001.Google Scholar
  88. 88.
    Kapp JA, Honjo K, Kapp LM, Goldsmith K, Bucy RP. Antigen, in the presence of TGF-beta, induces up-regulation of FoxP3gfp+ in CD4+ TCR transgenic T cells that mediate linked suppression of CD8+ T cell responses. J Immunol. 2007;179(4):2105–14.PubMedGoogle Scholar
  89. 89.
    Levings MK, Allan S, d’Hennezel E, Piccirillo CA. Functional dynamics of naturally occurring regulatory T cells in health and autoimmunity. Adv Immunol. 2006;92:119–55.PubMedGoogle Scholar
  90. 90.
    Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999;190(7):995–1004.PubMedGoogle Scholar
  91. 91.
    Fernandez I, Zeiser R, Karsunky H, Kambham N, Beilhack A, Soderstrom K, et al. CD101 surface expression discriminates potency among murine FoxP3+ regulatory T cells. J Immunol. 2007;179(5):2808–14.PubMedGoogle Scholar
  92. 92.
    Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994;265(5176):1237–40.PubMedGoogle Scholar
  93. 93.
    Faria AM, Weiner HL. Oral tolerance. Immunol Rev. 2005;206:232–59.PubMedGoogle Scholar
  94. 94.
    Dinesh RK, Skaggs BJ, La Cava A, Hahn BH, Singh RP. CD8+ tregs in lupus, autoimmunity, and beyond. Autoimmun Rev. 2010;9(8):560–8.PubMedGoogle Scholar
  95. 95.
    Hovhannisyan Z, Treatman J, Littman DR, Mayer L. Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology. 2011;140(3):957–65.PubMedGoogle Scholar
  96. 96.
    Cosmi L, Liotta F, Lazzeri E, Francalanci M, Angeli R, Mazzinghi B, et al. Human CD8+ CD25+ thymocytes share phenotypic and functional features with CD4+ CD25+ regulatory thymocytes. Blood. 2003;102(12):4107–14.PubMedGoogle Scholar
  97. 97.
    Endharti AT, Rifa’I M, Shi Z, Fukuoka Y, Nakahara Y, Kawamoto Y, et al. Cutting edge: CD8+ CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells. J Immunol. 2005;175(11):7093–7.PubMedGoogle Scholar
  98. 98.
    Suzuki H, Kundig TM, Furlonger C, Wakeham A, Timms E, Matsuyama T, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science. 1995;268(5216):1472–6.PubMedGoogle Scholar
  99. 99.
    Rifa’i M, Kawamoto Y, Nakashima I, Suzuki H. Essential roles of CD8+ CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med. 2004;200(9):1123–34.PubMedGoogle Scholar
  100. 100.
    Lee YH, Ishida Y, Rifa’i M, Shi Z, Isobe K, Suzuki H. Essential role of CD8+ CD122+ regulatory T cells in the recovery from experimental autoimmune encephalomyelitis. J Immunol. 2008;180(2):825–32.PubMedGoogle Scholar
  101. 101.
    Rifa’i M, Shi Z, Zhang SY, Lee YH, Shiku H, Isobe K, et al. CD8+ CD122+ regulatory T cells recognize activated T cells via conventional MHC class I-alphabetaTCR interaction and become IL-10-producing active regulatory cells. Int Immunol. 2008;20(7):937–47.PubMedGoogle Scholar
  102. 102.
    Saitoh O, Abiru N, Nakahara M, Nagayama Y. CD8+ CD122+ T cells, a newly identified regulatory T subset, negatively regulate graves’ hyperthyroidism in a murine model. Endocrinology. 2007;148(12):6040–6.PubMedGoogle Scholar
  103. 103.
    Shi Z, Okuno Y, Rifa’i M, Endharti AT, Akane K, Isobe K, et al. Human CD8+ CXCR3+ T cells have the same function as murine CD8+ CD122+ treg. Eur J Immunol. 2009;39(8):2106–19.PubMedGoogle Scholar
  104. 104.
    Jiang H, Ware R, Stall A, Flaherty L, Chess L, Pernis B. Murine CD8+ T cells that specifically delete autologous CD4+ T cells expressing V beta 8 TCR: a role of the qa-1 molecule. Immunity. 1995;2(2):185–94.PubMedGoogle Scholar
  105. 105.
    Jiang H, Kashleva H, Xu LX, Forman J, Flaherty L, Pernis B, et al. T cell vaccination induces T cell receptor vbeta-specific qa-1-restricted regulatory CD8(+) T cells. Proc Natl Acad Sci USA. 1998;95(8):4533–7.PubMedGoogle Scholar
  106. 106.
    Hu D, Ikizawa K, Lu L, Sanchirico ME, Shinohara ML, Cantor H. Analysis of regulatory CD8 T cells in qa-1-deficient mice. Nat Immunol. 2004;5(5):516–23.PubMedGoogle Scholar
  107. 107.
    Tennakoon DK, Mehta RS, Ortega SB, Bhoj V, Racke MK, Karandikar NJ. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol. 2006;176(11):7119–29.PubMedGoogle Scholar
  108. 108.
    Correale J, Villa A. Isolation and characterization of CD8+ regulatory T cells in multiple sclerosis. J Neuroimmunol. 2008;195(1–2):121–34.PubMedGoogle Scholar
  109. 109.
    Jiang H, Braunstein NS, Yu B, Winchester R, Chess L. CD8+ T cells control the TH phenotype of MBP-reactive CD4+ T cells in EAE mice. Proc Natl Acad Sci USA. 2001;98(11):6301–6.PubMedGoogle Scholar
  110. 110.
    Liu Z, Tugulea S, Cortesini R, Suciu-Foca N. Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+ CD28- T cells. Int Immunol. 1998;10(6):775–83.PubMedGoogle Scholar
  111. 111.
    Balashov KE, Khoury SJ, Hafler DA, Weiner HL. Inhibition of T cell responses by activated human CD8+ T cells is mediated by interferon-gamma and is defective in chronic progressive multiple sclerosis. J Clin Invest. 1995;95(6):2711–9.PubMedGoogle Scholar
  112. 112.
    Filaci G, Bacilieri S, Fravega M, Monetti M, Contini P, Ghio M, et al. Impairment of CD8+ T suppressor cell function in patients with active systemic lupus erythematosus. J Immunol. 2001;166(10):6452–7.PubMedGoogle Scholar
  113. 113.
    Filaci G, Fravega M, Negrini S, Procopio F, Fenoglio D, Rizzi M, et al. Nonantigen specific CD8+ T suppressor lymphocytes originate from CD8+ CD28- T cells and inhibit both T-cell proliferation and CTL function. Hum Immunol. 2004;65(2):142–56.PubMedGoogle Scholar
  114. 114.
    Filaci G, Rizzi M, Setti M, Fenoglio D, Fravega M, Basso M, et al. Non-antigen-specific CD8(+) T suppressor lymphocytes in diseases characterized by chronic immune responses and inflammation. Ann N Y Acad Sci. 2005;1050:115–23.PubMedGoogle Scholar
  115. 115.
    Filaci G, Fravega M, Fenoglio D, Rizzi M, Negrini S, Viggiani R, et al. Non-antigen specific CD8+ T suppressor lymphocytes. Clin Exp Med. 2004;4(2):86–92.PubMedGoogle Scholar
  116. 116.
    Jiang S, Tugulea S, Pennesi G, Liu Z, Mulder A, Lederman S, et al. Induction of MHC-class I restricted human suppressor T cells by peptide priming in vitro. Hum Immunol. 1998;59(11):690–9.PubMedGoogle Scholar
  117. 117.
    Ciubotariu R, Colovai AI, Pennesi G, Liu Z, Smith D, Berlocco P, et al. Specific suppression of human CD4+ th cell responses to pig MHC antigens by CD8+ CD28- regulatory T cells. J Immunol. 1998;161(10):5193–202.PubMedGoogle Scholar
  118. 118.
    Colovai AI, Liu Z, Ciubotariu R, Lederman S, Cortesini R, Suciu-Foca N. Induction of xenoreactive CD4+ T-cell anergy by suppressor CD8+ CD28- T cells. Transplantation. 2000;69(7):1304–10.PubMedGoogle Scholar
  119. 119.
    Uss E, Rowshani AT, Hooibrink B, Lardy NM, van Lier RA, ten Berge IJ. CD103 is a marker for alloantigen-induced regulatory CD8+ T cells. J Immunol. 2006;177(5):2775–83.PubMedGoogle Scholar
  120. 120.
    Billerbeck E, Blum HE, Thimme R. Parallel expansion of human virus-specific FoxP3- effector memory and de novo-generated FoxP3+ regulatory CD8+ T cells upon antigen recognition in vitro. J Immunol. 2007;179(2):1039–48.PubMedGoogle Scholar
  121. 121.
    Lu L, Yu Y, Li G, Pu L, Zhang F, Zheng S, et al. CD8(+)CD103(+) regulatory T cells in spontaneous tolerance of liver allografts. Int Immunopharmacol. 2009;9(5):546–8.PubMedGoogle Scholar
  122. 122.
    Jarvis LB, Matyszak MK, Duggleby RC, Goodall JC, Hall FC, Gaston JS. Autoreactive human peripheral blood CD8+ T cells with a regulatory phenotype and function. Eur J Immunol. 2005;35(10):2896–908.PubMedGoogle Scholar
  123. 123.
    Mahic M, Henjum K, Yaqub S, Bjornbeth BA, Torgersen KM, Tasken K, et al. Generation of highly suppressive adaptive CD8(+)CD25(+)FOXP3(+) regulatory T cells by continuous antigen stimulation. Eur J Immunol. 2008;38(3):640–6.PubMedGoogle Scholar
  124. 124.
    Joosten SA, van Meijgaarden KE, Savage ND, de Boer T, Triebel F, van der Wal A, et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci USA. 2007;104(19):8029–34.PubMedGoogle Scholar
  125. 125.
    Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+ CD25+ tregs. J Clin Invest. 2005;115(10):2904–13.PubMedGoogle Scholar
  126. 126.
    Ablamunits V, Herold KC. Generation and function of human regulatory CD8+ T cells induced by a humanized OKT3 monoclonal antibody hOKT3gamma1 (ala–ala). Hum Immunol. 2008;69(11):732–6.PubMedGoogle Scholar
  127. 127.
    Menager-Marcq I, Pomie C, Romagnoli P, van Meerwijk JP. CD8+ CD28- regulatory T lymphocytes prevent experimental inflammatory bowel disease in mice. Gastroenterology. 2006;131(6):1775–85.PubMedGoogle Scholar
  128. 128.
    Ho J, Kurtz CC, Naganuma M, Ernst PB, Cominelli F, Rivera-Nieves J. A CD8+/CD103high T cell subset regulates TNF-mediated chronic murine ileitis. J Immunol. 2008;180(4):2573–80.PubMedGoogle Scholar
  129. 129.
    Fujiwara D, Chen L, Wei B, Braun J. Small intestine CD11c+ CD8+ T cells suppress CD4+ T cell-induced immune colitis. Am J Physiol Gastrointest Liver Physiol. 2011;300(6):G939–47.PubMedGoogle Scholar
  130. 130.
    Fleissner D, Frede A, Knott M, Knuschke T, Geffers R, Hansen W, et al. Generation and function of immunosuppressive human and murine CD8+ T cells by transforming growth factor-beta and retinoic acid. Immunology. 2011;134(1):82–92.PubMedGoogle Scholar
  131. 131.
    Campbell NA, Park MS, Toy LS, Yio XY, Devine L, Kavathas P, et al. A non-class I MHC intestinal epithelial surface glycoprotein, gp180, binds to CD8. Clin Immunol. 2002;102(3):267–74.PubMedGoogle Scholar
  132. 132.
    Allez M, Tieng V, Nakazawa A, Treton X, Pacault V, Dulphy N, et al. CD4+ NKG2D+ T cells in crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology. 2007;132(7):2346–58.PubMedGoogle Scholar
  133. 133.
    Nakazawa A, Dotan I, Brimnes J, Allez M, Shao L, Tsushima F, et al. The expression and function of costimulatory molecules B7H and B7–H1 on colonic epithelial cells. Gastroenterology. 2004;126(5):1347–57.PubMedGoogle Scholar
  134. 134.
    Brimnes J, Allez M, Dotan I, Shao L, Nakazawa A, Mayer L. Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease. J Immunol. 2005;174(9):5814–22.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Mount Sinai School of MedicineImmunology InstituteNew YorkUSA

Personalised recommendations