Immunologic Research

, Volume 53, Issue 1–3, pp 235–250 | Cite as

The immune system in the aging human

  • Paulina Dominika Rymkiewicz
  • Yi Xiong Heng
  • Anusha Vasudev
  • Anis LarbiEmail author
Singapore Immunology Network


With the improvement of medical care and hygienic conditions, there has been a tremendous increment in human lifespan. However, many of the elderly (>65 years) display chronic illnesses, and a majority requires frequent and longer hospitalization. The robustness of the immune system to eliminate or control infections is often eroded with advancing age. Nevertheless, some elderly individuals do cope better than others. The origin of these inter-individual differences may come from genetic, lifestyle conditions (nutrition, socio-economic parameters), as well as the type, number and recurrence of pathogens encountered during life. The theory we are supporting is that chronic infections, through life, will induce profound changes in the immune system probably due to unbalanced inflammatory profiles. Persistent viruses such a cytomegalovirus are not eliminated and are a driven force to immune exhaustion. Because of their age, elderly individuals may have seen more of these chronic stimulators and have experienced more reactivation episodes ultimately leading to shrinkage of their repertoire and overall immune robustness. This review integrates updates on immunity with advancing age and its impact on associated clinical conditions.


Aging Immunosenescence Cytomegalovirus Inflammation Co-morbidities 



This work is supported by the Singapore Immunology Network (SIgN), Biopolis, A*STAR, Singapore. We thank Nurhidaya Binte Shadan, Ivy Low, and Seri Mustafa for their support at the SIgN Flow Cytometry Facility. We apologize for the contribution of other authors that could not be cited here.


  1. 1.
    Gillis S, Kozak R, Durante M, Weksler ME. Immunological studies of aging. Decreased production of and response to T cell growth factor by lymphocytes from aged humans. J Clin Invest. 1981;67(4):937–42.PubMedCrossRefGoogle Scholar
  2. 2.
    Makinodan T. Nature of the decline in antigen-induced humoral immunity with age. Mech Ageing Dev. 1980;14(1–2):165–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Hirokawa K, Makinodan T. Thymic involution: effect on T cell differentiation. J Immunol. 1975;114(6):1659–64.PubMedGoogle Scholar
  4. 4.
    Mitchell WA, Lang PO, Aspinall R. Tracing thymic output in older individuals. Clin Exp Immunol. 2010;161(3):497–503.PubMedCrossRefGoogle Scholar
  5. 5.
    Steinmann GG, Klaus B, Müller-Hermelink HK. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol. 1985;22(5):563–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD. Thymic involution and immune reconstitution. Trends Immunol. 2009;30(7):366–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Steinmann GG. Changes in the human thymus during aging. Curr Top Pathol. 1986;75:43–88.PubMedCrossRefGoogle Scholar
  8. 8.
    George AJ, Ritter MA. Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today. 1996;17(6):267–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Hartwig M, Steinmann G. On a causal mechanism of chronic thymic involution in man. Mech Ageing Dev. 1994;75(2):151–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Plum J, De Smedt M, Leclercq G, Verhasselt B, Vandekerckhove B. Interleukin-7 is a critical growth factor in early human T-cell development. Blood. 1996;88(11):4239–45.PubMedGoogle Scholar
  11. 11.
    Aspinall R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol. 1997;158(7):3037–45.PubMedGoogle Scholar
  12. 12.
    Henson SM, Pido-Lopez J, Aspinall R. Reversal of thymic atrophy. Exp Gerontol. 2004;39(4):673–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood. 2006;108(12):3777–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Kollman C, Howe CWS, Anasetti C, Antin JH, Davies SM, Filipovich AH, Hegland J, Kamani N, Kernan NA, King R, Ratanatharathorn V, Weisdorf D, Confer DL. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood. 2001;98(7):2043–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Waterstrat AOE, Miller A, Swiderski C, Liang Y, Van Zant G. Mechanisms of stem cell aging. In: Rudolf KL, editor. Telomeres and telomerasein ageing, disease, and cancer. Berlin: Springer; 2008. p. 111–40.CrossRefGoogle Scholar
  16. 16.
    Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci USA. 2011;108(50):20012–7.Google Scholar
  17. 17.
    Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010;22(4):507–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Kovacs EJ, Palmer JL, Fortin CF, Fulop T Jr, Goldstein DR, Linton PJ. Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol. 2009;30(7):319–24.PubMedCrossRefGoogle Scholar
  19. 19.
    Fulop T, Larbi A, Douziech N, Fortin C, Guerard KP, Lesur O, Khalil A, Dupuis G. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004;3(4):217–26.PubMedCrossRefGoogle Scholar
  20. 20.
    LA Fortin CF, Lesur O, Douziech N, Fulop T Jr. Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol. 2006;79(5):1061–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Fortin CF, Larbi A, Dupuis G, Lesur O, Fülöp T Jr. GM-CSF activates the Jak/STAT pathway to rescue polymorphonuclear neutrophils from spontaneous apoptosis in young but not elderly individuals. Biogerontology. 2007;8(2):173–87.PubMedCrossRefGoogle Scholar
  22. 22.
    Leng SX, Xue QL, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Busse PJ, Mathur SK. Age-related changes in immune function: effect on airway inflammation. J Allergy Clin Immunol. 2010; 126(4):690–9; quiz 700–1.Google Scholar
  24. 24.
    King MJ, Bukantz SC, Phillips S, Mohapatra SS, Tamulis T, Lockey RF. Serum total IgE and specific IgE to Dermatophagoides pteronyssinus, but not eosinophil cationic protein, are more likely to be elevated in elderly asthmatic patients. Allergy Asthma Proc. 2004;25(5):321–5.PubMedGoogle Scholar
  25. 25.
    Slavin RG, Haselkorn T, Lee JH, Zheng B, Deniz Y, Wenzel SE. Asthma in older adults: observations from the epidemiology and natural history of asthma: outcomes and treatment regimens (TENOR) study. Ann Allergy Asthma Immunol. 2006;96(3):406–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Mathur SK, Schwantes EA, Jarjour NN, Busse WW. Age-related changes in eosinophil function in human subjects. Chest. 2008;133(2):412–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Sprecher E, Becker Y, Kraal G, Hall E, Harrison D, Shultz LD. Effect of aging on epidermal dendritic cell populations in C57BL/6J mice. J Invest Dermatol. 1990;94(2):247–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Sunderkotter C, Kalden H, Luger TA. Aging and the skin immune system. Arch Dermatol. 1997;133(10):1256–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Ghersetich I, Lotti T. alpha-Interferon cream restores decreased levels of Langerhans/indeterminate (CD1a+) cells in aged and PUVA-treated skin. Skin Pharmacol. 1994;7(3):118–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Pereira LF, Duarte de Souza AP, Borges TJ, Bonorino C. Impaired in vivo CD4+ T cell expansion and differentiation in aged mice is not solely due to T cell defects: decreased stimulation by aged dendritic cells. Mech Ageing Dev. 2011;132(4):187–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol. 2009;70(10):777–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Saurwein-Teissl M, Schönitzer D, Grubeck-Loebenstein B. Dendritic cell responsiveness to stimulation with influenza vaccine is unimpaired in old age. Exp Gerontol. 1998;33(6):625–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Ciaramella A, Spalletta G, Bizzoni F, Salani F, Caltagirone C, Bossu P. Effect of age on surface molecules and cytokine expression in human dendritic cells. Cell Immunol. 2011;269(2):82–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Agrawal A, Tay J, Ton S, Agrawal S, Gupta S. Increased reactivity of dendritic cells from aged subjects to self-antigen, the human DNA. J Immunol. 2009;182(2):1138–45.PubMedGoogle Scholar
  35. 35.
    Moretto MM, Lawlor EM, Khan IA. Aging mice exhibit a functional defect in mucosal dendritic cell response against an intracellular pathogen. J Immunol. 2008;181(11):7977–84.PubMedGoogle Scholar
  36. 36.
    Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol. 2007;178(11):6912–22.PubMedGoogle Scholar
  37. 37.
    El Mezayen R, El Gazzar M, Myer R, High KP. Aging-dependent upregulation of IL-23p19 gene expression in dendritic cells is associated with differential transcription factor binding and histone modifications. Aging Cell. 2009;8(5):553–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Sharma S, Dominguez AL, Lustgarten J. Aging affect the anti-tumor potential of dendritic cell vaccination, but it can be overcome by co-stimulation with anti-OX40 or anti-4-1BB. Exp Gerontol. 2006;41(1):78–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol. 2010;30(6):806–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;11:30.PubMedCrossRefGoogle Scholar
  42. 42.
    Peralbo E, Corona A, Solana R. Invariant NKT and NKT-like lymphocytes: two different T cell subsets that are differentially affected by ageing. Exp Gerontol. 2007;42(8):703–8.PubMedCrossRefGoogle Scholar
  43. 43.
    DelaRosa O, Tarazona R, Casado JG, Alonso C, Ostos B, Pena J, Solana R. Valpha24+ NKT cells are decreased in elderly humans. Exp Gerontol. 2002;37(2–3):213–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Peralbo E, DelaRosa O, Gayoso I, Pita ML, Tarazona R, Solana R. Decreased frequency and proliferative response of invariant Valpha24Vbeta11 natural killer T (iNKT) cells in healthy elderly. Biogerontology. 2006;7(5–6):483–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Pawelec G, Ferguson FG, Wikby A. The SENIEUR protocol after 16 years. Mech Ageing Dev. 2001;122(2):132–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Vallejo AN, Hamel DL, Mueller RG, Ives DG, Michel JJ, Boudreau RM, Newman AB. NK-like T cells and plasma cytokines, but not anti-viral serology, define immune fingerprints of resilience and mild disability in exceptional aging. PLoS ONE. 2011;6(10):26558.CrossRefGoogle Scholar
  47. 47.
    Beli EC, Clinthorne JF, Duriancik DM, Hwang I, Kim S, Gardner EM. Natural killer cell function is altered during the primary response of aged mice to influenza infection. Mech Ageing Dev. 2011;132(10):503–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Almeida-Oliveira A, Smith-Carvalho M, Porto LC, Cardoso-Oliveira J, Ribeiro Ados S, Falcão RR, Abdelhay E, Bouzas LF, Thuler LC, Ornellas MH, Diamond HR. Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol. 2011;72(4):319–29.PubMedCrossRefGoogle Scholar
  49. 49.
    Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10(7):467–78.PubMedCrossRefGoogle Scholar
  50. 50.
    Colonna-Romano G, Aquino A, Bulati M, Lio D, Candore G, Oddo G, Scialabba G, Vitello S, Caruso C. Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence. Exp Gerontol. 2004;39(10):1439–46.PubMedCrossRefGoogle Scholar
  51. 51.
    Colonna-Romano G, Potestio M, Aquino A, Candore G, Lio D, Caruso C. Gamma/delta T lymphocytes are affected in the elderly. Exp Gerontol. 2002;37(2–3):205–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Argentati K, Re F, Donnini A, Tucci MG, Franceschi C, Bartozzi B, Bernardini G, Provinciali M. Numerical and functional alterations of circulating gammadelta T lymphocytes in aged people and centenarians. J Leukoc Biol. 2002;72(1):65–71.PubMedGoogle Scholar
  53. 53.
    Re F, Poccia F, Donnini A, Bartozzi B, Bernardini G, Provinciali M. Skewed representation of functionally distinct populations of Vgamma9Vdelta2 T lymphocytes in aging. Exp Gerontol. 2005;40(1–2):59–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Gupta S, Bi R, Su K, Yel L, Chiplunkar S, Gollapudi S. Characterization of naive, memory and effector CD8+ T cells: effect of age. Exp Gerontol. 2004;39(4):545–50.PubMedCrossRefGoogle Scholar
  55. 55.
    Liu K, Catalfamo M, Li Y, Henkart PA, Weng NP. IL-15 mimics T cell receptor crosslinking in the induction of cellular proliferation, gene expression, and cytotoxicity in CD8+ memory T cells. Proc Natl Acad Sci USA. 2002;99(9):6192–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Fann M, Chiu WK, Wood WH 3rd, Levine BL, Becker KG, Weng NP. Gene expression characteristics of CD28null memory phenotype CD8+ T cells and its implication in T-cell aging. Immunol Rev. 2005;205:190–206.PubMedCrossRefGoogle Scholar
  57. 57.
    Douziech N, Seres I, Larbi A, Szikszay E, Roy PM, Arcand M, Dupuis G, Fulop T Jr. Modulation of human lymphocyte proliferative response with aging. Exp Gerontol. 2002;37(2–3):369–87.PubMedCrossRefGoogle Scholar
  58. 58.
    Fulop T Jr, Barabas G, Varga Z, Jozsef C, Csabina S, Szucs S, Seres I, Szikszay E, Jeney Z, Penyige A. Age-dependent changes in transmembrane signalling: identification of G proteins in human lymphocytes and polymorphonuclear leukocytes. Cell Signal. 1993;5(5):593–603.PubMedCrossRefGoogle Scholar
  59. 59.
    Fülöp T Jr, Gagné D, Goulet AC, Desgeorges S, Lacombe G, Arcand M, Dupuis G. Age-related impairment of p56lck and ZAP-70 activities in human T lymphocytes activated through the TcR/CD3 complex. Exp Gerontol. 1999;34(2):197–216.PubMedCrossRefGoogle Scholar
  60. 60.
    He HT, Marguet D. T-cell antigen receptor triggering and lipid rafts: a matter of space and time scales. Talking Point on the involvement of lipid rafts in T-cell activation. EMBO Rep. 2008;9(6):525–30.PubMedCrossRefGoogle Scholar
  61. 61.
    Larbi A, Douziech N, Dupuis G, Khalil A, Pelletier H, Guerard KP, Fulop T Jr. Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes. J Leukoc Biol. 2004;75(2):373–81.PubMedCrossRefGoogle Scholar
  62. 62.
    Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fulop T Jr. Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal. 2006;18(7):1017–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Ohno-Iwashita Y, Shimada Y, Hayashi M, Inomata M. Plasma membrane microdomains in aging and disease. Geriatr Gerontol Int. 2010;10(Suppl 1):S41–52.PubMedCrossRefGoogle Scholar
  64. 64.
    Koch S, Larbi A, Derhovanessian E, Ozcelik D, Naumova E, Pawelec G. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing. 2008;5:6.PubMedCrossRefGoogle Scholar
  65. 65.
    Di Mitri D, Azevedo RI, Henson SM, Libri V, Riddell NE, Macaulay R, Kipling D, Soares MV, Battistini L, Akbar AN. Reversible senescence in human CD4+CD45RA+CD27− memory T cells. J Immunol. 2011;187(5):2093–100.PubMedCrossRefGoogle Scholar
  66. 66.
    Henson SM, Franzese O, Macaulay R, Libri V, Azevedo RI, Kiani-Alikhan S, Plunkett FJ, Masters JE, Jackson S, Griffiths SJ, Pircher HP, Soares MV, Akbar AN. KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood. 2009;113(26):6619–28.PubMedCrossRefGoogle Scholar
  67. 67.
    Kolar GR, Mehta D, Wilson PC, Capra JD. Diversity of the Ig repertoire is maintained with age in spite of reduced germinal centre cells in human tonsil lymphoid tissue. Scand J Immunol. 2006;64(3):314–24.PubMedCrossRefGoogle Scholar
  68. 68.
    McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood. 2001;98(8):2498–507.PubMedCrossRefGoogle Scholar
  69. 69.
    Franceschi C, Monti D, Sansoni P, Cossarizza A. The immunology of exceptional individuals: the lesson of centenarians. Immunol Today. 1995;16(1):12–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Colonna-Romano G, Bulati M, Aquino A, Scialabba G, Candore G, Lio D, Motta M, Malaguarnera M, Caruso C. B cells in the aged: CD27, CD5, and CD40 expression. Mech Ageing Dev. 2003;124(4):389–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K. Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol. 2005;175(5):3262–7.PubMedGoogle Scholar
  72. 72.
    Frasca D, Landin AM, Lechner SC, Ryan JG, Schwartz R, Riley RL, Blomberg BB. Aging down-regulates the transcription factor E2A, activation-induced cytidine deaminase, and Ig class switch in human B cells. J Immunol. 2008;180(8):5283–90.PubMedGoogle Scholar
  73. 73.
    Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD, Guralnik JM, Longo DL. The origins of age-related proinflammatory state. Blood. 2005;105(6):2294–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Hager K, Machein U, Krieger S, Platt D, Seefried G, Bauer J. Interleukin-6 and selected plasma proteins in healthy persons of different ages. Neurobiol Aging. 1994;15(6):771–2.PubMedCrossRefGoogle Scholar
  75. 75.
    Reuben DB, Judd-Hamilton L, Harris TB. MacArthur Studies of Successful Aging. The associations between physical activity and inflammatory markers in high-functioning older persons: MacArthur Studies of Successful Aging. J Am Geriatr Soc. 2003;51(8):1125–30.PubMedCrossRefGoogle Scholar
  76. 76.
    Dunn-Lewis C, Kraemer WJ, Kupchak BR, Kelly NA, Creighton BA, Luk HY, Ballard KD, Comstock BA, Szivak TK, Hooper DR, Denegar CR, Volek JS. A multi-nutrient supplement reduced markers of inflammation and improved physical performance in active individuals of middle to older age: a randomized, double-blind, placebo-controlled study. Nutr J. 2011;10:90.PubMedCrossRefGoogle Scholar
  77. 77.
    Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci. 2000;908:244–54.PubMedCrossRefGoogle Scholar
  78. 78.
    Carrieri G, Marzi E, Olivieri F, Marchegiani F, Cavallone L, Cardelli M, Giovagnetti S, Stecconi R, Molendini C, Trapassi C, De Benedictis G, Kletsas D, Franceschi C. The G/C915 polymorphism of transforming growth factor beta1 is associated with human longevity: a study in Italian centenarians. Aging Cell. 2004;3(6):443–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Lio DSL, Crivello A, Colonna-Romano G, Candore G, Bonafé M, Cavallone L, Marchegiani F, Olivieri F, Franceschi C, Caruso C. Inflammation, genetics, and longevity: further studies on the protective effects in men of IL-10 -1082 promoter SNP and its interaction with TNF-alpha -308 promoter SNP. J Med Genet. 2003;40(4):296–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, Achong MK. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest. 1998;101(2):311–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Fagiolo U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C, Paganelli R. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23(9):2375–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Williams LM, Lali F, Willetts K, Balague C, Godessart N, Brennan F, Feldmann M, Foxwell BM. Rac mediates TNF-induced cytokine production via modulation of NF-kappaB. Mol Immunol. 2008;45(9):2446–54.PubMedCrossRefGoogle Scholar
  83. 83.
    Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ, Sutton-Tyrrell K, Rubin SM, Ding J, Simonsick EM, Harris TB, Pahor M. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation. 2003;108(19):2317–22.PubMedCrossRefGoogle Scholar
  84. 84.
    Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M, Pedersen BK. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol. 2000;121(2):255–60.PubMedCrossRefGoogle Scholar
  85. 85.
    Suzuki T, Katz R, Jenny NS, Zakai NA, LeWinter MM, Barzilay JI, Cushman M. Metabolic syndrome, inflammation, and incident heart failure in the elderly: the cardiovascular health study. Circ Heart Fail. 2008;1(4):242–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–52.PubMedCrossRefGoogle Scholar
  87. 87.
    Fröhlich M, Imhof A, Berg G, Hutchinson WL, Pepys MB, Boeing H, Muche R, Brenner H, Koenig W. Association between C-reactive protein and features of the metabolic syndrome: a population-based study. Diabetes Care. 2000;23(12):1835–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Ridker PM, Wilson PWF, Grundy SM. Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation. 2004;109(23):2818–25.PubMedCrossRefGoogle Scholar
  89. 89.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–34.PubMedCrossRefGoogle Scholar
  90. 90.
    Fulop T, Larbi A, Kotb R, de Angelis F, Pawelec G. Aging, immunity, and cancer. Discov Med. 2011;11(61):537–50.PubMedGoogle Scholar
  91. 91.
    Il’yasova D, Colbert LH, Harris TB, Newman AB, Bauer DC, Satterfield S, Kritchevsky SB. Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomarkers Prev. 2005;14(10):2413–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE. Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS ONE. 2011;6(2):e16103.PubMedCrossRefGoogle Scholar
  93. 93.
    Larbi A, Franceschi C, Mazzatti D, Solana R, Wikby A, Pawelec G. Aging of the immune system as a prognostic factor for human longevity. Physiology (Bethesda). 2008;23:64–74.CrossRefGoogle Scholar
  94. 94.
    Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis. 2006;43(9):1143–51.PubMedCrossRefGoogle Scholar
  95. 95.
    Hadrup SR, Strindhall J, Køllgaard T, Seremet T, Johansson B, Pawelec G, thor Straten P, Wikby A. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol. 2006;176(4):2645–53.PubMedGoogle Scholar
  96. 96.
    Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, Nayak L, Moss PA. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169(4):1984–92.PubMedGoogle Scholar
  97. 97.
    Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, Muller CA, Pircher H, Pawelec G. Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol. 2003;38(8):911–20.PubMedCrossRefGoogle Scholar
  98. 98.
    Ouyang Q, Wagner WM, Wikby A, Walter S, Aubert G, Dodi AI, Travers P, Pawelec G. Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol. 2003;23(4):247–57.PubMedCrossRefGoogle Scholar
  99. 99.
    Pourgheysari B, Khan N, Best D, Bruton R, Nayak L, Moss PA. The cytomegalovirus-specific CD4+ T-cell response expands with age and markedly alters the CD4+ T-cell repertoire. J Virol. 2007;81(14):7759–65.PubMedCrossRefGoogle Scholar
  100. 100.
    Khan N, Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, Rickinson AB, Moss PA. Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol. 2004;173(12):7481–9.PubMedGoogle Scholar
  101. 101.
    Ouyang Q, Wagner WM, Walter S, Müller CA, Wikby A, Aubert G, Klatt T, Stevanovic S, Dodi T, Pawelec G. An age-related increase in the number of CD8+ T cells carrying receptors for an immunodominant Epstein-Barr virus (EBV) epitope is counteracted by a decreased frequency of their antigen-specific responsiveness. Mech Ageing Dev. 2003;124(4):477–85.PubMedCrossRefGoogle Scholar
  102. 102.
    Franceschi C, Bonafe M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 2000;18(16):1717–20.PubMedCrossRefGoogle Scholar
  103. 103.
    Miles DJ, van der Sande M, Jeffries D, Kaye S, Ismaili J, Ojuola O, Sanneh M, Touray ES, Waight P, Rowland-Jones S, Whittle H, Marchant A. Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J Virol. 2007;81(11):5766–76.PubMedCrossRefGoogle Scholar
  104. 104.
    Miles DJ, van der Sande M, Jeffries D, Kaye S, Ojuola O, Sanneh M, Cox M, Palmero MS, Touray ES, Waight P, Rowland-Jones S, Whittle H, Marchant A. Maintenance of large subpopulations of differentiated CD8 T-cells two years after cytomegalovirus infection in Gambian infants. PLoS ONE. 2008;3(8):e2905.PubMedCrossRefGoogle Scholar
  105. 105.
    Appay V, Fastenackels S, Katlama C, Ait-Mohand H, Schneider L, Guihot A, Keller M, Grubeck-Loebenstein B, Simon A, Lambotte O, Hunt PW, Deeks SG, Costagliola D, Autran B, Sauce D. Old age and anti-cytomegalovirus immunity are associated with altered T-cell reconstitution in HIV-1-infected patients. AIDS. 2011;25(15):1813–22.PubMedCrossRefGoogle Scholar
  106. 106.
    Papagno L, Spina CA, Marchant A, Salio M, Rufer N, Little S, Dong T, Chesney G, Waters A, Easterbrook P, Dunbar PR, Shepherd D, Cerundolo V, Emery V, Griffiths P, Conlon C, McMichael AJ, Richman DD, Rowland-Jones SL, Appay V. Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol. 2004;2(2):E20.PubMedCrossRefGoogle Scholar
  107. 107.
    Sauce D, Larsen M, Fastenackels S, Duperrier A, Keller M, Grubeck-Loebenstein B, Ferrand C, Debre P, Sidi D, Appay V. Evidence of premature immune aging in patients thymectomized during early childhood. J Clin Invest. 2009;119(10):3070–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Yao X, Hamilton RG, Weng NP, Xue QL, Bream JH, Li H, Tian J, Yeh SH, Resnick B, Xu X, Walston J, Fried LP, Leng SX. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29(31):5015–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Ng TP, Niti M, Chiam PC, Kua EH. Prevalence and correlates of functional disability in multiethnic elderly Singaporeans. J Am Geriatr Soc. 2006;54(1):21–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Ng TP, Feng L, Niti M, Kua EH, Yap KB. Tea consumption and cognitive impairment and decline in older Chinese adults. Am J Clin Nutr. 2008;88(1):224–31.PubMedGoogle Scholar
  111. 111.
    Ng TP, Broekman BFP, Niti M, Gwee X, Kua EH. Determinants of successful aging using a multidimensional definition among Chinese elderly in Singapore. Am J Geriatr Psychiatry. 2009;17(5):407–16.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Paulina Dominika Rymkiewicz
    • 1
  • Yi Xiong Heng
    • 1
  • Anusha Vasudev
    • 1
  • Anis Larbi
    • 1
    Email author
  1. 1.Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore

Personalised recommendations