Immunologic Research

, Volume 52, Issue 1–2, pp 127–132 | Cite as

Inflammatory and immune mechanisms in contact hypersensitivity (CHS) in rats

Immunology in Serbia

Abstract

Contact hypersensitivity (CHS) is a T-cell-mediated skin inflammatory reaction to cutaneous exposure to small sensitizing chemicals, haptens. Majority of CHS studies were conducted in mice and there is paucity of data in other experimental animals. In this review, after a brief survey of murine CHS, hitherto known characteristics of CHS in rats were presented including inflammatory and immune mechanisms of both sensitization and elicitation phases. Survey of literature of rat CHS is presented, with our data concerning the importance of genetic background both in the induction and in the expression of reaction to dinitrochlorobenzene. The knowledge of CHS in rats, preferred animal in immunopharmacological studies, might help development of immunomodulatory intervention in contact allergy.

Keywords

Contact hypersensitivity (CHS) Rats Dinitrochlorobenzene (DNCB) Ear swelling response Draining lymph node response Peripheral blood granulocytes 

Notes

Acknowledgments

This work was supported by the Ministry of Education and Science of the Republic of Serbia, grant no. 173039.

References

  1. 1.
    Anderson SE, Siegel PD, Meade BJ: The LLNA: a brief review of recent advances and limitations. J Allergy 2011; doi: 10.1155/2011/424203.
  2. 2.
    Saint-Mezard P, Rosieres A, Krasteva M, Berard F, Dubois B, Kaiserlian D, Nicolas JF. Allergic contact dermatitis. Eur J Dermatol. 2004;14:284–95.PubMedGoogle Scholar
  3. 3.
    Divkovic M, Pease CK, Gerberick GF, Basketter DA. Hapten-protein binding: from theory to practical application in the in vitro prediction of skin sensitization. Contact Dermat. 2005;53:189–200.CrossRefGoogle Scholar
  4. 4.
    Lappin MB, Dearman RJ, Norval M, Kimber I. Lack of association between interleukin-6 production by contact allergen-activated draining lymph node cells and lymphoproliferative activity. Am J Contact Dermat. 1998;9:34–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Bour H, Peyron E, Gaucherand M, Garrigue JL, Desvignes C, Kaiserlian D, Revillard JP, Nicolas JF. Major histocompatibility complex class I-restricted CD8+ T cells and class II-restricted CD4+ T cells, respectively, mediate and regulate contact sensitivity to dinitrofluorobenzene. Eur J Immunol. 1995;25:3006–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Hope JC, Dearman RJ, Debicki RJ, Kimber I, Hopkins SJ. Interleukin-6 production by draining lymph node cells following primary contact sensitization: relationship to the proliferative response. Int Arch Allergy Immunol. 1994;103:378.PubMedCrossRefGoogle Scholar
  7. 7.
    Hope JC, Dearman RJ, Kimber I, Hopkins SJ. The kinetics of cytokine production by draining lymph node cells following primary exposure of mice to chemical allergens. Immunology. 1994;83:250–5.PubMedGoogle Scholar
  8. 8.
    Hope JC, Campbell F, Hopkins SJ. Deficiency of IL-2 or IL-6 reduces lymphocyte proliferation, but only IL-6 deficiency decreases the contact hypersensitivity response. Eur J Immunol. 2000;30:197–203.PubMedCrossRefGoogle Scholar
  9. 9.
    Kimber I, Dearman RJ. The local lymph node assay: developments and applications. Toxicology. 1994;93:13–31.PubMedCrossRefGoogle Scholar
  10. 10.
    Larsen JM, Geisler C, Nielsen MW, Boding L, von Essen M, Hansen AK, Skov L, Bonefeld CM. Cellular dynamics in the draining lymph nodes during sensitization and elicitation phases of contact hypersensitivity. Contact Dermat. 2007;57:300–8.CrossRefGoogle Scholar
  11. 11.
    Dilulio NA, Engeman T, Armstrong D, Tannenbaum C, Hamilton TA, Fairchild RL. Groalpha-mediated recruitment of neutrophils is required for elicitation of contact hypersensitivity. Eur J Immunol. 1999;29:3485–95.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang L, Tinkle SS. Chemical activation of innate and specific immunity in contact dermatitis. J Invest Dermatol. 2000;115:168–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Engeman T, Gorbachev AV, Kish DD, Fairchild RL. The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. J Leukoc Biol. 2004;76:941–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Grabbe S, Schwarz T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today. 1998;19:37–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Gocinski B, Tigelaar R. Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion. J Immunol. 1990;144:4121–8.PubMedGoogle Scholar
  16. 16.
    Xu H, Dilulio NA, Firchild RL. T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon-γ-producing (Tc1) effector CD8+ T cells and interleukin (IL) 4/IL-10-producing (Th2) negative regulatory CD4+ T cells. J Exp Med. 1996;183:1001–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang B, Fujisawa H, Zhuang L, Freed I, Howell BG, Shahid S, et al. CD4+ Th1 and CD8+ type 1 cytotoxic T cells both play a crucial role in the full development of contact hypersensitivity. J Immunol. 2000;165:6783–90.PubMedGoogle Scholar
  18. 18.
    Saint-Mezard P, Berard F, Dubois B, Kaiserlian D, Nicolas J. The role of CD4+ and CD8+ T cells in contact hypersensitivity and allergic contact dermatitis. Eur J Dermatol. 2004;14:131–8.PubMedGoogle Scholar
  19. 19.
    Moussavi A, Dearman RJ, Kimber I, Kemeny DM. Cytokine production by CD4+ and CD8+ T cells in mice following primary exposure to chemical allergens: evidence for functional differentiation of T lymphocytes in vivo. Int Arch Allergy Immunol. 1998;116:116–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Gorbachev AV, Fairchild RL. Induction and regulation of T-cell priming for contact hypersensitivity. Crit Rev Immunol. 2001;21:451–72.PubMedGoogle Scholar
  21. 21.
    Saulnier MS, Huang M, Aguet M, Ryffel B. Role of interferon-γ in contact hypersensitivity assessed in interferon-γ receptor deficient mice. Toxicology. 1995;102:301–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Reeve VE, Bosnic M, Boehm-Wicox C, Nishimura N, Ley RD. Ultraviolet A radiation (320–400 nm) protects hairless mice from immunosuppression induced by ultraviolet B radiation. Int Arch Allergy Immunol. 1999;115:316–22.CrossRefGoogle Scholar
  23. 23.
    Gautman SC, Chikkala NF, Hamilton TA. Negative regulation of contact sensitivity to trinitrochlorobenzene. J Immunol. 1992;148:1411–5.Google Scholar
  24. 24.
    Weigmann B, Schwing J, Huber H, Ross R, Mossmann H, Knop J, et al. Diminished contact hypersensitivity response in IL-4 deficient mice at a late phase of the elicitation reaction. Scand J Immunol. 1997;45:308–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Traidl C, Jugert F, Krieg T, Merk H, Hunzelmann N. Inhibition of allergic contact dermatitis to DNCB but not to oxazolone in interleukin-4-deficient mice. J Invest Dermatol. 1999;112:476–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Watanabe H, Unger M, Tuvel B, Wang B, Sauder DN. Contact hypersensitivity: the mechanism of immune responses and T cell balance. J Interferon Cytokine Res. 2002;22:407–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity. 2002;17:375–87.PubMedCrossRefGoogle Scholar
  28. 28.
    He D, Wu L, Kim HK, Li H, Elmets CA, Xu H. IL-17 and IFN-γ mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol. 2009;183:1463–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Kish DD, Li X, Fairchild RL. CD8 T cells producing IL-17 and IFN-γ initiate the innate immune response required for responses to antigen skin challenge. J Immunol. 2009;182:5949–59.PubMedCrossRefGoogle Scholar
  30. 30.
    Scheynius A, Skoglund C, Johansson C, Holmdahl R, Van der Meide PH. The rat as an experimental model for studies on immune regulating mechanisms in contact allergic reactions. Acta Derm Venereol Supll (Stockh). 1988;135:54–6.Google Scholar
  31. 31.
    Skoglund C, Scheynius A, Holmdahl R, Van der Meide PH. Enhancement of DTH reaction and inhibition of the expression of class II transplantation antigens by in vivo treatment with antibodies against y-interferon. Clin Exp Immunol. 1988;71:428–32.PubMedGoogle Scholar
  32. 32.
    Skoglund C, Scheynius A. Effects of interferon-γ treatment of the cutaneous DTH reaction in rats. Arch Dermatol Res. 1990;282:318–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Peszkowski MJ, Warfvinge G, Larsson Å. Allergic and irritant contact responses to DNFB in BN and LEW rat strains with different Th1/Th2 profiles. Acta Derm Venereol. 1994;74:371–4.PubMedGoogle Scholar
  34. 34.
    Kataranovski M, Kandolf-Sekulović L, Milosavljević I. Production of TNF-alpha by skin explants of dinitrochlorobenzene-challenged ears in rats: a model for the evaluation of contact hypersensitivity. Vojnosanit Pregl. 2002;59:581–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Kataranovski M, Milojevic G, Kandolf L, Milosevic V. Skin-organ culture as an approach in evaluation of nitric oxide (NO) involvement in contact hypersensitivity expression. Acta Dermatoven APA. 2002;11:3–10.Google Scholar
  36. 36.
    Hartmann B, Staedrler F, Hartmann N, Meingassner J, Firat H. Gene expression profiling of skin and draining lymph nodes of rats affected with cutaneous contact hypersensitivity. Inflamm Res. 2006;55:322–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Kuper CF, Stierum RH, Boorsma A, Schijf MA, Prinsen M, Bruijntjes JP, Bloksma N, Arts JHE. The contact allergen dinitrochlorobenzene (DNCB) and respiratory allergy in the Th2-prone Brown Norway rat. Toxicology. 2008;246:213–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Dearman RJ, Warbrick EV, Skinner R, Kimber I. Cytokine fingerprinting of chemical allergens: species comparisons and statistical analyses. Food Chem Toxicol. 2002;40:1881–92.PubMedCrossRefGoogle Scholar
  39. 39.
    Arts JH, Droge SC, Bloksma N, Kuper CF. Local lymph node activation in rats after dermal application of the sensitizers 2,4-dinitrochlorobenzene and trimellitic anhydride. Food Chem Toxicol. 1996;34:55–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Arts JH, Dröge SC, Spanhaak S, Bloksma N, Penninks AH, Kuper CF. Local lymph node activation and IgE responses in Brown Norway and Wistar rats after dermal application of sensitizing and non-sensitizing chemicals. Toxicology. 1997;117:229–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Arts JH, Mommers C, Heer C. Dose-response relationships and threshold levels in skin and respiratory allergy. Crit Rev Toxicol. 2006;36:219–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Popov A, Mirkov I, Miljkovic DJ, Belij S, Zolotarevski L, Kataranovski D, Kataranovski M. Contact allergic response to dinitrochlorobenzene (DNCB) in rats: insight from sensitization phase. Immunobiology. 2011;216:763–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Friedmann PS. The relationships between exposure dose and response in induction and elicitation of contact hypersensitivity in humans. Br J Dermatol. 2007;157:1093–102.PubMedCrossRefGoogle Scholar
  44. 44.
    Stricker RB, Zhu YS, Elswood BF, Dumlao C, Van Elk J, Berger TG, Tappero J, Epstein WL, Kiprov DD. Pilot study of topical dinitrochlorobenzene (DNCB) in human immunodeficiency virus infection. Immunol Lett. 1993;36:1–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Stricker RB, Goldberg B, Epstein WL. Immunological changes in patient with systemic lupus erythematosus treated with topical dinitrochlorobenzene. Lancet. 1995;345:1505–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Stricker RB, Goldberg B, Mills LB, Epstein WL. Decrease in viral load associated with topical dinitrochlorobenzene therapy in HIV disease. Res Virol. 1997;148:343–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Traub A, Margulis SB, Stricker RB. Topical immune modulation with dinitrochlorobenzene in HIV disease: a controlled trial from Brazil. Dermatalogy. 1997;195:369–73.CrossRefGoogle Scholar
  48. 48.
    Yoshizawa Y, Kitamura K, Maibach HI. Successful immunotherapy of chronic nodular prurigo with topical dinitrochlorobenzene. Br J Dermatol. 1999;141:387–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Yoshizawa Y, Matsui H, Izaki S, Kitamura K, Maibach HI. Topical dinitrochlorobenzene therapy in the treatment of refractory atopic dermatitis: systemic immunotherapy. J Am Aca Dermatol. 2000;42:258–62.Google Scholar
  50. 50.
    Dearman RJ, Kimber I. Differential stimulation of immune function by respiratory and contact chemical allergens. Immunology. 1991;72:563–70.PubMedGoogle Scholar
  51. 51.
    Kimber I, Ward RK, Shepherd CJ, Smith MN, McAdam KPWJ, Raynes JG. Acute-phase proteins and the serological evaluation of experimental contact sensitivity in the mouse. Int Arch Allergy Immunol. 1989;89:149–55.CrossRefGoogle Scholar
  52. 52.
    Kimber I, Cumberbatc M, Humphreys M, Hopkins SJ. Contact hypersensitivity induces plasma interleukin 6. Int Arch Allergy Immunol. 1990;92:97–9.CrossRefGoogle Scholar
  53. 53.
    Kataranovski M, Draskovic-Pavlovic B, Jovcic G, Milojevic G, Todorovic V, Colic M, Popovic P. Peripheral blood granulocyte activity following contact sensitization of rats with dinitrochlorobenzene. Toxicology. 2001;162:121–36.PubMedCrossRefGoogle Scholar
  54. 54.
    Belij S, Popov A, Zolotarevski L, Mirkov I, Djokic J, Kataranovski D, Kataranovski M: Systemic immunomodulatory effects of topical dinitrochlorobenzene (DNCB) in rats. Activity of peripheral blood polymorphonuclear cells. Environ Toxicol Pharmacol. 2012;33:168–80.PubMedCrossRefGoogle Scholar
  55. 55.
    Belij S, Popov A, Mirkov I, Zolotarevski L, Kataranovski D, Kataranovski M: Percutaneous toxicity of dinitrochlorobenzene (DNCB) in rats. Cutan Ocul Toxicol. 2012;31:7–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of EcologyInstitute for Biological Research “Sinisa Stankovic,” University of BelgradeBelgradeSerbia
  2. 2.Faculty of Biology, Institute of Physiology and BiochemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations