Immunologic Research

, Volume 53, Issue 1–3, pp 162–167

Severe drug eruptions revisited

Singapore Immunology Network


Genetic and non-genetic factors can alter the action of a medicinal drug, resulting in a wide range of responses in different individuals. Among the many potential side effects of therapies, a drug eruption is an adverse drug reaction in the skin. Genetic associations between HLA haplotype and drug eruption have been reported, and immune responses against latent herpesvirus have also been implicated in some forms of this syndrome. We believe that it is essential to understand the immune mechanisms by which some drugs induce hypersensitivity so that we can better target these pathways to limit drug side effects. The identification of patient risk factors for drug eruptions will allow the rational design of novel immunotherapies for these life-threatening reactions, and the development of alternative interventions for high-risk patients.


Drug hypersensitivity Adverse drug reactions Drug reaction with eosinophilia and systemic symptoms (DRESS) Stevens–Johnson Syndrome (SJS) The toxic epidermal necrolysis (TEN) Lyell’s syndrome Herpesvirus Epstein–Barr virus Human herpesvirus 6 


  1. 1.
    World Health Organization. International drug monitoring: the role of national centres. Report of a WHO meeting. World Health Organ Tech Rep Ser 1972; 498:1–25.Google Scholar
  2. 2.
    Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK, Breckenridge AM. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329:15–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Wester K, Jonsson AK, Spigset O, Druid H, Hagg S. Incidence of fatal adverse drug reactions: a population based study. Br J Clin Pharmacol. 2008;65:573–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Riedl MA, Casillas AM. Adverse drug reactions: types and treatment options. Am Fam Physician. 2003;68:1781–90.PubMedGoogle Scholar
  5. 5.
    Cutaneous drug reaction case reports: from the world literature. Am J Clin Dermatol 2003; 4:803–7.Google Scholar
  6. 6.
    Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, Hoigne R. Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. Allergy. 1997;52:388–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Swanbeck G, Dahlberg E. Cutaneous drug reactions. An attempt to quantitative estimation. Arch Dermatol Res. 1992;284:215–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Shiohara T, Iijima M, Ikezawa Z, Hashimoto K. The diagnosis of a DRESS syndrome has been sufficiently established on the basis of typical clinical features and viral reactivations. Br J Dermatol. 2007;156:1083–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Arellano F, Sacristan JA. Allopurinol hypersensitivity syndrome: a review. Ann Pharmacother. 1993;27:337–43.PubMedGoogle Scholar
  10. 10.
    Lee A. Adverse drugs reaction. London: Pharmaceutical Press; 2005.Google Scholar
  11. 11.
    Martin SF. T lymphocyte-mediated immune responses to chemical haptens and metal ions: implications for allergic and autoimmune disease. Int Arch Allergy Immunol. 2004;134:186–98.PubMedCrossRefGoogle Scholar
  12. 12.
    Aiba S, Manome H, Nakagawa S, Mollah ZU, Mizuashi M, Ohtani T, Yoshino Y, Tagami H. p38 Mitogen-activated protein kinase and extracellular signal-regulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiCl2 and 2,4-dinitrochlorobenzene. J Invest Dermatol. 2003;120:390–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3:196–200.PubMedCrossRefGoogle Scholar
  14. 14.
    Arrighi JF, Rebsamen M, Rousset F, Kindler V, Hauser C. A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol. 2001;166:3837–45.PubMedGoogle Scholar
  15. 15.
    Pichler WJ. Delayed drug hypersensitivity reactions. Ann Intern Med. 2003;139:683–93.PubMedGoogle Scholar
  16. 16.
    Mauri-Hellweg D, Bettens F, Mauri D, Brander C, Hunziker T, Pichler WJ. Activation of drug-specific CD4+ and CD8+ T cells in individuals allergic to sulfonamides, phenytoin, and carbamazepine. J Immunol. 1995;155:462–72.PubMedGoogle Scholar
  17. 17.
    Naisbitt DJ, Gordon SF, Pirmohamed M, Burkhart C, Cribb AE, Pichler WJ, Park BK. Antigenicity and immunogenicity of sulphamethoxazole: demonstration of metabolism-dependent haptenation and T-cell proliferation in vivo. Br J Pharmacol. 2001;133:295–305.PubMedCrossRefGoogle Scholar
  18. 18.
    Ortmann B, Martin S, von Bonin A, Schiltz E, Hoschutzky H, Weltzien HU. Synthetic peptides anchor T cell-specific TNP epitopes to MHC antigens. J Immunol. 1992;148:1445–50.PubMedGoogle Scholar
  19. 19.
    Padovan E, Bauer T, Tongio MM, Kalbacher H, Weltzien HU. Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol. 1997;27:1303–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Schnyder B, Mauri-Hellweg D, Zanni M, Bettens F, Pichler WJ. Direct, MHC-dependent presentation of the drug sulfamethoxazole to human alphabeta T cell clones. J Clin Invest. 1997;100:136–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Zanni MP, von Greyerz S, Schnyder B, Brander KA, Frutig K, Hari Y, Valitutti S, Pichler WJ. HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes. J Clin Invest. 1998;102:1591–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Pichler WJ. Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept. Curr Opin Allergy Clin Immunol. 2002;2:301–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Yawalkar N, Egli F, Hari Y, Nievergelt H, Braathen LR, Pichler WJ. Infiltration of cytotoxic T cells in drug-induced cutaneous eruptions. Clin Exp Allergy. 2000;30:847–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Blanca M, Posadas S, Torres MJ, Leyva L, Mayorga C, Gonzalez L, Juarez C, Fernandez J, Santamaria LF. Expression of the skin-homing receptor in peripheral blood lymphocytes from subjects with nonimmediate cutaneous allergic drug reactions. Allergy. 2000;55:998–1004.PubMedCrossRefGoogle Scholar
  25. 25.
    Nassif A, Bensussan A, Dorothee G, Mami-Chouaib F, Bachot N, Bagot M, Boumsell L, Roujeau JC. Drug specific cytotoxic T-cells in the skin lesions of a patient with toxic epidermal necrolysis. J Invest Dermatol. 2002;118:728–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Chung WH, Hung SI, Yang JY, Su SC, Huang SP, Wei CY, Chin SW, Chiou CC, Chu SC, Ho HC, et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Med. 2008;14:1343–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Viard I, Wehrli P, Bullani R, Schneider P, Holler N, Salomon D, Hunziker T, Saurat JH, Tschopp J, French LE. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282:490–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Prins C, Kerdel FA, Padilla RS, Hunziker T, Chimenti S, Viard I, Mauri DN, Flynn K, Trent J, Margolis DJ, et al. Treatment of toxic epidermal necrolysis with high-dose intravenous immunoglobulins: multicenter retrospective analysis of 48 consecutive cases. Arch Dermatol. 2003;139:26–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Prins C, Vittorio C, Padilla RS, Hunziker T, Itin P, Forster J, Brocker EB, Saurat JH, French LE. Effect of high-dose intravenous immunoglobulin therapy in Stevens-Johnson syndrome: a retrospective, multicenter study. Dermatology. 2003;207:96–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Picard D, Janela B, Descamps V, D’Incan M, Courville P, Jacquot S, Rogez S, Mardivirin L, Moins-Teisserenc H, Toubert A, et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): a multiorgan antiviral T cell response. Sci Transl Med. 2010;2:46ra62.PubMedCrossRefGoogle Scholar
  31. 31.
    Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, Riddell SR, Warren EH, Carlson CS. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood. 2009;114:4099–107.PubMedCrossRefGoogle Scholar
  32. 32.
    Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity. Science. 1999;286:958–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Chessman D, Kostenko L, Lethborg T, Purcell AW, Williamson NA, Chen Z, Kjer-Nielsen L, Mifsud NA, Tait BD, Holdsworth R, et al. Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity. 2008;28:822–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Martin SF, Esser PR, Schmucker S, Dietz L, Naisbitt DJ, Park BK, Vocanson M, Nicolas JF, Keller M, Pichler WJ, et al. T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell Mol Life Sci. 2010;67:4171–84.PubMedCrossRefGoogle Scholar
  35. 35.
    Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, Wu JY, Chen YT. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428:486.PubMedCrossRefGoogle Scholar
  36. 36.
    Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, Lin YL, Lan JL, Yang LC, Hong HS, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005;102:4134–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, Sayer D, Castley A, Mamotte C, Maxwell D, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359:727–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, Lai E, Davies K, Handley A, Dow DJ, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet. 2002;359:1121–2.PubMedCrossRefGoogle Scholar
  39. 39.
    Hung SI, Chung WH, Jee SH, Chen WC, Chang YT, Lee WR, Hu SL, Wu MT, Chen GS, Wong TW, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics. 2006;16:297–306.PubMedCrossRefGoogle Scholar
  40. 40.
    Locharernkul C, Loplumlert J, Limotai C, Korkij W, Desudchit T, Tongkobpetch S, Kangwanshiratada O, Hirankarn N, Suphapeetiporn K, Shotelersuk V. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia. 2008;49:2087–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Mehta TY, Prajapati LM, Mittal B, Joshi CG, Sheth JJ, Patel DB, Dave DM, Goyal RK. Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians. Indian J Dermatol Venereol Leprol. 2009;75:579–82.PubMedCrossRefGoogle Scholar
  42. 42.
    Lonjou C, Thomas L, Borot N, Ledger N, de Toma C, LeLouet H, Graf E, Schumacher M, Hovnanian A, Mockenhaupt M, et al. A marker for Stevens-Johnson syndrome …: ethnicity matters. Pharmacogenomics J. 2006;6:265–8.PubMedGoogle Scholar
  43. 43.
    Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S, Naldi L, Bouwes-Bavinck JN, Sidoroff A, de Toma C, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics. 2008;18:99–107.PubMedCrossRefGoogle Scholar
  44. 44.
    Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M, Shirakata Y, Ikezawa Z, Iijima M, Shiohara T, Hashimoto K, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet. 2011;20:1034–41.PubMedCrossRefGoogle Scholar
  45. 45.
    McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D, Carrington M, Sills GJ, Marson T, Jia X, de Bakker PI, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364:1134–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, Jagel-Guedes E, Rugina S, Kozyrev O, Cid JF, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358:568–79.PubMedCrossRefGoogle Scholar
  47. 47.
    Martin AM, Nolan D, Gaudieri S, Almeida CA, Nolan R, James I, Carvalho F, Phillips E, Christiansen FT, Purcell AW, et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc Natl Acad Sci U S A. 2004;101:4180–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Chen P, Lin JJ, Lu CS, Ong CT, Hsieh PF, Yang CC, Tai CT, Wu SL, Lu CH, Hsu YC, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011;364:1126–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Descamps V, Mahe E, Houhou N, Abramowitz L, Rozenberg F, Ranger-Rogez S, Crickx B. Drug-induced hypersensitivity syndrome associated with Epstein-Barr virus infection. Br J Dermatol. 2003;148:1032–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Aihara M, Sugita Y, Takahashi S, Nagatani T, Arata S, Takeuchi K, Ikezawa Z. Anticonvulsant hypersensitivity syndrome associated with reactivation of cytomegalovirus. Br J Dermatol. 2001;144:1231–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Suzuki Y, Inagi R, Aono T, Yamanishi K, Shiohara T. Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol. 1998;134:1108–12.PubMedCrossRefGoogle Scholar
  52. 52.
    Tohyama M, Yahata Y, Yasukawa M, Inagi R, Urano Y, Yamanishi K, Hashimoto K. Severe hypersensitivity syndrome due to sulfasalazine associated with reactivation of human herpesvirus 6. Arch Dermatol. 1998;134:1113–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Cacoub P, Musette P, Descamps V, Meyer O, Speirs C, Finzi L, Roujeau JC. The DRESS syndrome: a literature review. Am J Med. 2011;124:588–97.PubMedCrossRefGoogle Scholar
  54. 54.
    Pullen H, Wright N, Murdoch JM. Hypersensitivity reactions to antibacterial drugs in infectious mononucleosis. Lancet. 1967;2:1176–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Coopman SA, Johnson RA, Platt R, Stern RS. Cutaneous disease and drug reactions in HIV infection. N Engl J Med. 1993;328:1670–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Rzany B, Mockenhaupt M, Stocker U, Hamouda O, Schopf E. Incidence of Stevens-Johnson syndrome and toxic epidermal necrolysis in patients with the acquired immunodeficiency syndrome in Germany. Arch Dermatol. 1993;129:1059.PubMedCrossRefGoogle Scholar
  57. 57.
    Tohyama M, Hashimoto K. New aspects of drug-induced hypersensitivity syndrome. J Dermatol. 2011;38:222–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Teraki Y, Murota H, Izaki S. Toxic epidermal necrolysis due to zonisamide associated with reactivation of human herpesvirus 6. Arch Dermatol. 2008;144:232–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Peppercorn AF, Miller MB, Fitzgerald D, Weber DJ, Groben PA, Cairns BA. High-level human herpesvirus-6 viremia associated with onset of Stevens-Johnson syndrome: report of two cases. J Burn Care Res. 2010;31:365–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Yeung CK, Ma SY, Hon C, Peiris M, Chan HH. Aetiology in sixteen cases of toxic epidermal necrolysis and Stevens-Johnson syndrome admitted within eight months in a teaching hospital. Acta Derm Venereol. 2003;83:179–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Luzuriaga K, Sullivan JL. Infectious mononucleosis. N Engl J Med. 2010;362:1993–2000.PubMedCrossRefGoogle Scholar
  62. 62.
    Yamanishi K, Okuno T, Shiraki K, Takahashi M, Kondo T, Asano Y, Kurata T. Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet. 1988;1:1065–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Ueda K, Kusuhara K, Okada K, Miyazaki C, Hidaka Y, Tokugawa K, Yamanishi K. Primary human herpesvirus 7 infection and exanthema subitum. Pediatr Infect Dis J. 1994;13:167–8.PubMedGoogle Scholar
  64. 64.
    Watanabe T, Kawamura T, Jacob SE, Aquilino EA, Orenstein JM, Black JB, Blauvelt A. Pityriasis rosea is associated with systemic active infection with both human herpesvirus-7 and human herpesvirus-6. J Invest Dermatol. 2002;119:793–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Shiohara T, Inaoka M, Kano Y. Drug-induced hypersensitivity syndrome (DIHS): a reaction induced by a complex interplay among herpesviruses and antiviral and antidrug immune responses. Allergol Int. 2006;55:1–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Callan MF, Steven N, Krausa P, Wilson JD, Moss PA, Gillespie GM, Bell JI, Rickinson AB, McMichael AJ. Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat Med. 1996;2:906–11.PubMedCrossRefGoogle Scholar
  67. 67.
    Kano Y, Hiraharas K, Sakuma K, Shiohara T. Several herpesviruses can reactivate in a severe drug-induced multiorgan reaction in the same sequential order as in graft-versus-host disease. Br J Dermatol. 2006;155:301–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Henle G, Henle W, Clifford P, Diehl V, Kafuko GW, Kirya BG, Klein G, Morrow RH, Munube GM, Pike P, et al. Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control groups. J Natl Cancer Inst. 1969;43:1147–57.PubMedGoogle Scholar
  69. 69.
    Levy JA, Ferro F, Greenspan D, Lennette ET. Frequent isolation of HHV-6 from saliva and high seroprevalence of the virus in the population. Lancet. 1990;335:1047–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Mardivirin L, Descamps V, Lacroix A, Delebassee S, Ranger-Rogez S. Early effects of drugs responsible for DRESS on HHV-6 replication in vitro. J Clin Virol. 2009;46:300–2.PubMedCrossRefGoogle Scholar
  71. 71.
    Williams F, Meenagh A, Darke C, Acosta A, Daar AS, Gorodezky C, Hammond M, Nascimento E, Middleton D. Analysis of the distribution of HLA-B alleles in populations from five continents. Hum Immunol. 2001;62:645–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR)BiopolisSingaporeSingapore

Personalised recommendations