Immunologic Research

, Volume 53, Issue 1–3, pp 58–77 | Cite as

TLR7 and TLR9 in SLE: when sensing self goes wrong

  • T. Celhar
  • R. Magalhães
  • A.-M. FairhurstEmail author
Singapore Immunology Network


Autoreactive B and T cells are present in healthy, autoimmunity-free individuals, but they are kept in check by various regulatory mechanisms. In systemic lupus erythematosus (SLE) patients, however, autoreactive cells are expanded, activated, and produce large quantities of autoantibodies, directed especially against nuclear antigens. These antibodies form immune complexes with self-nucleic acids present in SLE serum. Since self-DNA and self-RNA in the form of protein complexes can act as TLR9 and TLR7 ligands, respectively, TLR stimulation is suggested as an additional signal contributing to activation and/or modulation of the aberrant adaptive immune response. Data from mouse models suggest a pathogenic role for TLR7 and a protective role for TLR9 in the pathogenesis of SLE. Future investigations are needed to elucidate the underlying modulatory mechanisms and the role of TLR7 and TLR9 in the complex pathogenesis of human SLE.


TLR7 TLR9 Autoimmunity Systemic lupus erythematosus NETs 


  1. 1.
    Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5. doi: 10.1126/science.1071059.PubMedCrossRefGoogle Scholar
  2. 2.
    Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med. 1993;177(4):999–1008.PubMedCrossRefGoogle Scholar
  3. 3.
    Nemazee DA, Burki K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature. 1989;337(6207):562–6. doi: 10.1038/337562a0.PubMedCrossRefGoogle Scholar
  4. 4.
    Duty JA, Szodoray P, Zheng NY, Koelsch KA, Zhang Q, Swiatkowski M, et al. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J Exp Med. 2009;206(1):139–51. doi: 10.1084/jem.20080611.PubMedCrossRefGoogle Scholar
  5. 5.
    Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW. Autoreactive T cells in healthy individuals. J Immunol. 2004;172(10):5967–72.PubMedGoogle Scholar
  6. 6.
    Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–7. doi: 10.1126/science.1086907.PubMedCrossRefGoogle Scholar
  7. 7.
    Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature. 1988;334(6184):676–82. doi: 10.1038/334676a0.PubMedCrossRefGoogle Scholar
  8. 8.
    Chang NH, McKenzie T, Bonventi G, Landolt-Marticorena C, Fortin PR, Gladman D, et al. Expanded population of activated antigen-engaged cells within the naive B cell compartment of patients with systemic lupus erythematosus. J Immunol. 2008;180(2):1276–84.PubMedGoogle Scholar
  9. 9.
    Yurasov S, Wardemann H, Hammersen J, Tsuiji M, Meffre E, Pascual V, et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med. 2005;201(5):703–11. doi: 10.1084/jem.20042251.PubMedCrossRefGoogle Scholar
  10. 10.
    Dorner T, Giesecke C, Lipsky PE. Mechanisms of B cell autoimmunity in SLE. Arthr Res Ther. 2011;13(5):243. doi: 10.1186/ar3433.CrossRefGoogle Scholar
  11. 11.
    Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med. 2003;349(16):1526–33. doi: 10.1056/NEJMoa021933.PubMedCrossRefGoogle Scholar
  12. 12.
    Yurasov S, Tiller T, Tsuiji M, Velinzon K, Pascual V, Wardemann H, et al. Persistent expression of autoantibodies in SLE patients in remission. J Exp Med. 2006;203(10):2255–61. doi: 10.1084/jem.20061446.PubMedCrossRefGoogle Scholar
  13. 13.
    Shmerling RH. Autoantibodies in systemic lupus erythematosus—there before you know it. N Engl J Med. 2003;349(16):1499–500. doi: 10.1056/NEJMp038142.PubMedCrossRefGoogle Scholar
  14. 14.
    Wandstrat AE, Carr-Johnson F, Branch V, Gray H, Fairhurst AM, Reimold A, et al. Autoantibody profiling to identify individuals at risk for systemic lupus erythematosus. J Autoimmun. 2006;27(3):153–60. doi: 10.1016/j.jaut.2006.09.001.PubMedCrossRefGoogle Scholar
  15. 15.
    Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthr Rheum. 1982;25(11):1271–7.CrossRefGoogle Scholar
  16. 16.
    Agmon-Levin N, Mosca M, Petri M, Shoenfeld Y. Systemic lupus erythematosus one disease or many? Autoimmun Rev. 2011;. doi: 10.1016/j.autrev.2011.10.020.Google Scholar
  17. 17.
    Pons-Estel GJ, Alarcon GS, Scofield L, Reinlib L, Cooper GS. Understanding the epidemiology and progression of systemic lupus erythematosus. Semin Arthr Rheum. 2010;39(4):257–68. doi: 10.1016/j.semarthrit.2008.10.007.CrossRefGoogle Scholar
  18. 18.
    Borchers AT, Naguwa SM, Shoenfeld Y, Gershwin ME. The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev. 2010;9(5):A277–87. doi: 10.1016/j.autrev.2009.12.008.PubMedCrossRefGoogle Scholar
  19. 19.
    Alarcon-Segovia D, Alarcon-Riquelme ME, Cardiel MH, Caeiro F, Massardo L, Villa AR, et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthr Rheum. 2005;52(4):1138–47. doi: 10.1002/art.20999.CrossRefGoogle Scholar
  20. 20.
    Molineros JE, Kim-Howard X, Deshmukh H, Jacob CO, Harley JB, Nath SK. Admixture in Hispanic Americans: its impact on ITGAM association and implications for admixture mapping in SLE. Genes Immun. 2009;10(5):539–45. doi: 10.1038/gene.2009.30.PubMedCrossRefGoogle Scholar
  21. 21.
    Fairhurst AM, Wandstrat AE, Wakeland EK. Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv Immunol. 2006;92:1–69. doi: 10.1016/S0065-2776(06)92001-X.PubMedCrossRefGoogle Scholar
  22. 22.
    Kanta H, Mohan C. Three checkpoints in lupus development: central tolerance in adaptive immunity, peripheral amplification by innate immunity and end-organ inflammation. Genes Immun. 2009;10(5):390–6. doi: 10.1038/gene.2009.6.PubMedCrossRefGoogle Scholar
  23. 23.
    Wakeland EK, Wandstrat AE, Liu K, Morel L. Genetic dissection of systemic lupus erythematosus. Curr Opin Immunol. 1999;11(6):701–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Kumar KR, Li L, Yan M, Bhaskarabhatla M, Mobley AB, Nguyen C, et al. Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science. 2006;312(5780):1665–9. doi: 10.1126/science.1125893.PubMedCrossRefGoogle Scholar
  25. 25.
    Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science. 2006;312(5780):1669–72. doi: 10.1126/science.1124978.PubMedCrossRefGoogle Scholar
  26. 26.
    Fairhurst AM, Hwang SH, Wang A, Tian XH, Boudreaux C, Zhou XJ, et al. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol. 2008;38(7):1971–8. doi: 10.1002/eji.200838138.PubMedCrossRefGoogle Scholar
  27. 27.
    Mohan C, Yu Y, Morel L, Yang P, Wakeland EK. Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T cell activation, differentiation, and cell death. J Immunol. 1999;162(11):6492–502.PubMedGoogle Scholar
  28. 28.
    Morel L, Blenman KR, Croker BP, Wakeland EK. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci USA. 2001;98(4):1787–92. doi: 10.1073/pnas.031336098.PubMedCrossRefGoogle Scholar
  29. 29.
    Mohan C, Alas E, Morel L, Yang P, Wakeland EK. Genetic dissection of SLE pathogenesis. Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnucleosomes. J Clin Invest. 1998;101(6):1362–72.PubMedGoogle Scholar
  30. 30.
    Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–9. doi: 10.1038/nature06116.PubMedCrossRefGoogle Scholar
  31. 31.
    Boackle SA, Holers VM, Chen X, Szakonyi G, Karp DR, Wakeland EK, et al. Cr2, a candidate gene in the murine Sle1c lupus susceptibility locus, encodes a dysfunctional protein. Immunity. 2001;15(5):775–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Rozzo SJ, Vyse TJ, Drake CG, Kotzin BL. Effect of genetic background on the contribution of New Zealand black loci to autoimmune lupus nephritis. Proc Natl Acad Sci USA. 1996;93(26):15164–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Kono DH, Burlingame RW, Owens DG, Kuramochi A, Balderas RS, Balomenos D, et al. Lupus susceptibility loci in New Zealand mice. Proc Natl Acad Sci USA. 1994;91(21):10168–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Xu Z, Duan B, Croker BP, Wakeland EK, Morel L. Genetic dissection of the murine lupus susceptibility locus Sle2: contributions to increased peritoneal B-1a cells and lupus nephritis map to different loci. J Immunol. 2005;175(2):936–43.PubMedGoogle Scholar
  35. 35.
    Morel L, Mohan C, Yu Y, Croker BP, Tian N, Deng A, et al. Functional dissection of systemic lupus erythematosus using congenic mouse strains. J Immunol. 1997;158(12):6019–28.PubMedGoogle Scholar
  36. 36.
    Mohan C, Morel L, Yang P, Wakeland EK. Genetic dissection of systemic lupus erythematosus pathogenesis: Sle2 on murine chromosome 4 leads to B cell hyperactivity. J Immunol. 1997;159(1):454–65.PubMedGoogle Scholar
  37. 37.
    Vyse TJ, Drake CG, Rozzo SJ, Roper E, Izui S, Kotzin BL. Genetic linkage of IgG autoantibody production in relation to lupus nephritis in New Zealand hybrid mice. J Clin Invest. 1996;98(8):1762–72. doi: 10.1172/JCI118975.PubMedCrossRefGoogle Scholar
  38. 38.
    Liu K, Li QZ, Yu Y, Liang C, Subramanian S, Zeng Z, et al. Sle3 and Sle5 can independently couple with Sle1 to mediate severe lupus nephritis. Genes Immun. 2007;8(8):634–45. doi: 10.1038/sj.gene.6364426.PubMedCrossRefGoogle Scholar
  39. 39.
    Munoz LE, Janko C, Chaurio RA, Schett G, Gaipl US, Herrmann M. IgG opsonized nuclear remnants from dead cells cause systemic inflammation in SLE. Autoimmunity. 2010;43(3):232–5. doi: 10.3109/08916930903510930.PubMedCrossRefGoogle Scholar
  40. 40.
    Li QZ, Zhou J, Yang R, Yan M, Ye Q, Liu K, et al. The lupus-susceptibility gene kallikrein downmodulates antibody-mediated glomerulonephritis. Genes Immun. 2009;10(5):503–8. doi: 10.1038/gene.2009.7.PubMedCrossRefGoogle Scholar
  41. 41.
    Kikuchi K, Lian ZX, Kimura Y, Selmi C, Yang GX, Gordon SC, et al. Genetic polymorphisms of toll-like receptor 9 influence the immune response to CpG and contribute to hyper-IgM in primary biliary cirrhosis. J Autoimmun. 2005;24(4):347–52. doi: 10.1016/j.jaut.2005.03.002.PubMedCrossRefGoogle Scholar
  42. 42.
    Waters ST, Fu SM, Gaskin F, Deshmukh US, Sung SS, Kannapell CC, et al. NZM2328: a new mouse model of systemic lupus erythematosus with unique genetic susceptibility loci. Clin Immunol. 2001;100(3):372–83. doi: 10.1006/clim.2001.5079.PubMedCrossRefGoogle Scholar
  43. 43.
    Morel L, Croker BP, Blenman KR, Mohan C, Huang G, Gilkeson G, et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc Natl Acad Sci USA. 2000;97(12):6670–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Fairhurst AM, Mathian A, Connolly JE, Wang A, Gray HF, George TA, et al. Systemic IFN-alpha drives kidney nephritis in B6.Sle123 mice. Eur J Immunol. 2008;38(7):1948–60. doi: 10.1002/eji.200837925.PubMedCrossRefGoogle Scholar
  45. 45.
    Wakui M, Kim J, Butfiloski EJ, Morel L, Sobel ES. Genetic dissection of lupus pathogenesis: Sle3/5 impacts IgH CDR3 sequences, somatic mutations, and receptor editing. J Immunol. 2004;173(12):7368–76.PubMedGoogle Scholar
  46. 46.
    Hanten JA, Vasilakos JP, Riter CL, Neys L, Lipson KE, Alkan SS, et al. Comparison of human B cell activation by TLR7 and TLR9 agonists. BMC Immunol. 2008;9:39. doi: 10.1186/1471-2172-9-39.PubMedCrossRefGoogle Scholar
  47. 47.
    Hogarth MB, Slingsby JH, Allen PJ, Thompson EM, Chandler P, Davies KA, et al. Multiple lupus susceptibility loci map to chromosome 1 in BXSB mice. J Immunol. 1998;161(6):2753–61.PubMedGoogle Scholar
  48. 48.
    Rogers NJ, Gabriel L, Nunes CT, Rose SJ, Thiruudaian V, Boyle J, et al. Monocytosis in BXSB mice is due to epistasis between Yaa and the telomeric region of chromosome 1 but does not drive the disease process. Genes Immun. 2007;8(8):619–27. doi: 10.1038/sj.gene.6364424.PubMedCrossRefGoogle Scholar
  49. 49.
    Haywood ME, Rose SJ, Horswell S, Lees MJ, Fu G, Walport MJ, et al. Overlapping BXSB congenic intervals, in combination with microarray gene expression, reveal novel lupus candidate genes. Genes Immun. 2006;7(3):250–63. doi: 10.1038/sj.gene.6364294.PubMedCrossRefGoogle Scholar
  50. 50.
    Merino R, Shibata T, De Kossodo S, Izui S. Differential effect of the autoimmune Yaa and lpr genes on the acceleration of lupus-like syndrome in MRL/MpJ mice. Eur J Immunol. 1989;19(11):2131–7. doi: 10.1002/eji.1830191124.PubMedCrossRefGoogle Scholar
  51. 51.
    Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978;148(5):1198–215.PubMedCrossRefGoogle Scholar
  52. 52.
    Murphy ED, Roths JB. A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation. Arthr Rheum. 1979;22(11):1188–94.CrossRefGoogle Scholar
  53. 53.
    Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA. 2006;103(26):9970–5. doi: 10.1073/pnas.0603912103.PubMedCrossRefGoogle Scholar
  54. 54.
    Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T, Ward JM, et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity. 2007;27(5):801–10. doi: 10.1016/j.immuni.2007.09.009.PubMedCrossRefGoogle Scholar
  55. 55.
    Santiago-Raber ML, Kikuchi S, Borel P, Uematsu S, Akira S, Kotzin BL, et al. Evidence for genes in addition to Tlr7 in the Yaa translocation linked with acceleration of systemic lupus erythematosus. J Immunol. 2008;181(2):1556–62.PubMedGoogle Scholar
  56. 56.
    Ichii O, Konno A, Sasaki N, Endoh D, Hashimoto Y, Kon Y. Altered balance of inhibitory and active Fc gamma receptors in murine autoimmune glomerulonephritis. Kidney Int. 2008;74(3):339–47. doi: 10.1038/ki.2008.182.PubMedCrossRefGoogle Scholar
  57. 57.
    Ichii O, Kamikawa A, Otsuka S, Hashimoto Y, Sasaki N, Endoh D, et al. Overexpression of interferon-activated gene 202 (Ifi202) correlates with the progression of autoimmune glomerulonephritis associated with the MRL chromosome 1. Lupus. 2010;19(8):897–905. doi: 10.1177/0961203310362534.PubMedCrossRefGoogle Scholar
  58. 58.
    Ichii O, Konno A, Sasaki N, Endoh D, Hashimoto Y, Kon Y. Autoimmune glomerulonephritis induced in congenic mouse strain carrying telomeric region of chromosome 1 derived from MRL/MpJ. Histol Histopathol. 2008;23(4):411–22.PubMedGoogle Scholar
  59. 59.
    Vidal S, Kono DH, Theofilopoulos AN. Loci predisposing to autoimmunity in MRL-Fas lpr and C57BL/6-Faslpr mice. J Clin Invest. 1998;101(3):696–702. doi: 10.1172/JCI1817.PubMedCrossRefGoogle Scholar
  60. 60.
    Kong PL, Morel L, Croker BP, Craft J. The centromeric region of chromosome 7 from MRL mice (Lmb3) is an epistatic modifier of Fas for autoimmune disease expression. J Immunol. 2004;172(5):2785–94.PubMedGoogle Scholar
  61. 61.
    Haraldsson MK, Louis-Dit-Sully CA, Lawson BR, Sternik G, Santiago-Raber ML, Gascoigne NR, et al. The lupus-related Lmb3 locus contains a disease-suppressing Coronin-1A gene mutation. Immunity. 2008;28(1):40–51. doi: 10.1016/j.immuni.2007.11.023.PubMedCrossRefGoogle Scholar
  62. 62.
    Miyawaki S, Nakamura Y, Takeshita T, Yoshida H, Shibata Y, Mitsuoka S. Marked acceleration of the autoimmune disease in MRL-lpr/lpr mice by the influence of the Yaa gene from BXSB mice. Lab Animal Sci. 1988;38(3):266–72.Google Scholar
  63. 63.
    Shi X, Xie C, Kreska D, Richardson JA, Mohan C. Genetic dissection of SLE: SLE1 and FAS impact alternate pathways leading to lymphoproliferative autoimmunity. J Exp Med. 2002;196(3):281–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Croker BP, Gilkeson G, Morel L. Genetic interactions between susceptibility loci reveal epistatic pathogenic networks in murine lupus. Genes Immun. 2003;4(8):575–85. doi: 10.1038/sj.gene.6364028.PubMedCrossRefGoogle Scholar
  65. 65.
    Arbuckle MR, James JA, Kohlhase KF, Rubertone MV, Dennis GJ, Harley JB. Development of anti-dsDNA autoantibodies prior to clinical diagnosis of systemic lupus erythematosus. Scand J Immunol. 2001;54(1–2):211–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Moser KL, Kelly JA, Lessard CJ, Harley JB. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun. 2009;10(5):373–9. doi: 10.1038/gene.2009.39.PubMedCrossRefGoogle Scholar
  67. 67.
    Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol. 2010;6(12):683–92. doi: 10.1038/nrrheum.2010.176.PubMedCrossRefGoogle Scholar
  68. 68.
    Rai E, Wakeland EK. Genetic predisposition to autoimmunity–what have we learned? Semin Immunol. 2011;23(2):67–83. doi: 10.1016/j.smim.2011.01.015.PubMedCrossRefGoogle Scholar
  69. 69.
    Medzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell. 1997;91(3):295–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296(5566):298–300. doi: 10.1126/science.1068883.PubMedCrossRefGoogle Scholar
  71. 71.
    Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005;202(8):1131–9. doi: 10.1084/jem.20050914.PubMedCrossRefGoogle Scholar
  72. 72.
    Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3 73:73ra20. doi: 10.1126/scitranslmed.3001201.
  73. 73.
    Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3 73:73ra19. doi: 10.1126/scitranslmed.3001180.
  74. 74.
    Lau CM, Broughton C, Tabor AS, Akira S, Flavell RA, Mamula MJ, et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med. 2005;202(9):1171–7. doi: 10.1084/jem.20050630.PubMedCrossRefGoogle Scholar
  75. 75.
    Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002;416(6881):603–7. doi: 10.1038/416603a.PubMedCrossRefGoogle Scholar
  76. 76.
    Kruse K, Janko C, Urbonaviciute V, Mierke CT, Winkler TH, Voll RE, et al. Inefficient clearance of dying cells in patients with SLE: anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis. 2010;15(9):1098–113. doi: 10.1007/s10495-010-0478-8.PubMedCrossRefGoogle Scholar
  77. 77.
    Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 2010;6(5):280–9. doi: 10.1038/nrrheum.2010.46.PubMedCrossRefGoogle Scholar
  78. 78.
    Gaipl US, Voll RE, Sheriff A, Franz S, Kalden JR, Herrmann M. Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmun Rev. 2005;4(4):189–94. doi: S10.1016/j.autrev.2004.10.007.PubMedCrossRefGoogle Scholar
  79. 79.
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5. doi: 10.1038/35047123.PubMedCrossRefGoogle Scholar
  80. 80.
    Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200. doi: 10.1038/ni758.PubMedCrossRefGoogle Scholar
  81. 81.
    Patole PS, Pawar RD, Lech M, Zecher D, Schmidt H, Segerer S, et al. Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol Dial Transplant. 2006;21(11):3062–73. doi: 10.1093/ndt/gfl336.PubMedCrossRefGoogle Scholar
  82. 82.
    Smuda C, Wechsler JB, Bryce PJ. TLR-induced activation of neutrophils promotes histamine production via a PI3 kinase dependent mechanism. Immunol Lett. 2011;141(1):102–8. doi: 10.1016/j.imlet.2011.08.002.PubMedCrossRefGoogle Scholar
  83. 83.
    Gururajan M, Jacob J, Pulendran B. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS ONE. 2007;2(9):e863. doi: 10.1371/journal.pone.0000863.PubMedCrossRefGoogle Scholar
  84. 84.
    Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol. 2003;33(4):827–33. doi: 10.1002/eji.200323797.PubMedCrossRefGoogle Scholar
  85. 85.
    Martinez J, Huang X, Yang Y. Toll-like receptor 8-mediated activation of murine plasmacytoid dendritic cells by vaccinia viral DNA. Proc Natl Acad Sci USA. 2010;107(14):6442–7. doi: 10.1073/pnas.0913291107.PubMedCrossRefGoogle Scholar
  86. 86.
    Boross P, Arandhara VL, Martin-Ramirez J, Santiago-Raber ML, Carlucci F, Flierman R, et al. The inhibiting Fc receptor for IgG, FcgammaRIIB, is a modifier of autoimmune susceptibility. J Immunol. 2011;187(3):1304–13. doi: 10.4049/jimmunol.1101194.PubMedCrossRefGoogle Scholar
  87. 87.
    Keszei M, Detre C, Rietdijk ST, Munoz P, Romero X, Berger SB, et al. A novel isoform of the Ly108 gene ameliorates murine lupus. J Exp Med. 2011;208(4):811–22. doi: 10.1084/jem.20101653.PubMedCrossRefGoogle Scholar
  88. 88.
    Wandstrat AE, Nguyen C, Limaye N, Chan AY, Subramanian S, Tian XH, et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity. 2004;21(6):769–80. doi: 10.1016/j.immuni.2004.10.009.PubMedCrossRefGoogle Scholar
  89. 89.
    Schwartzberg PL, Mueller KL, Qi H, Cannons JL. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol. 2009;9(1):39–46. doi: 10.1038/nri2456.PubMedCrossRefGoogle Scholar
  90. 90.
    Howie D, Laroux FS, Morra M, Satoskar AR, Rosas LE, Faubion WA, et al. Cutting edge: the SLAM family receptor Ly108 controls T cell and neutrophil functions. J Immunol. 2005;174(10):5931–5.PubMedGoogle Scholar
  91. 91.
    Pawar RD, Ramanjaneyulu A, Kulkarni OP, Lech M, Segerer S, Anders HJ. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephrol. 2007;18(6):1721–31. doi: 10.1681/ASN.2006101162.PubMedCrossRefGoogle Scholar
  92. 92.
    Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity. 2006;25(3):417–28. doi: 10.1016/j.immuni.2006.07.013.PubMedCrossRefGoogle Scholar
  93. 93.
    Nickerson KM, Christensen SR, Shupe J, Kashgarian M, Kim D, Elkon K, et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J Immunol. 2010;184(4):1840–8. doi: 10.4049/jimmunol.0902592.PubMedCrossRefGoogle Scholar
  94. 94.
    Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science. 2001;294(5546):1540–3. doi: 10.1126/science.1064890.PubMedCrossRefGoogle Scholar
  95. 95.
    Yasuda K, Richez C, Uccellini MB, Richards RJ, Bonegio RG, Akira S, et al. Requirement for DNA CpG content in TLR9-dependent dendritic cell activation induced by DNA-containing immune complexes. J Immunol. 2009;183(5):3109–17. doi: 10.4049/jimmunol.0900399.PubMedCrossRefGoogle Scholar
  96. 96.
    Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest. 2005;115(2):407–17. doi: 10.1172/JCI23025.PubMedGoogle Scholar
  97. 97.
    Lovgren T, Eloranta ML, Bave U, Alm GV, Ronnblom L. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthr Rheum. 2004;50(6):1861–72. doi: 10.1002/art.20254.CrossRefGoogle Scholar
  98. 98.
    Vallin H, Blomberg S, Alm GV, Cederblad B, Ronnblom L. Patients with systemic lupus erythematosus (SLE) have a circulating inducer of interferon-alpha (IFN-alpha) production acting on leucocytes resembling immature dendritic cells. Clin Exp Immunol. 1999;115(1):196–202.PubMedCrossRefGoogle Scholar
  99. 99.
    Vallin H, Perers A, Alm GV, Ronnblom L. Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J Immunol. 1999;163(11):6306–13.PubMedGoogle Scholar
  100. 100.
    Christensen SR, Kashgarian M, Alexopoulou L, Flavell RA, Akira S, Shlomchik MJ. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med. 2005;202(2):321–31. doi: 10.1084/jem.20050338.PubMedCrossRefGoogle Scholar
  101. 101.
    Wu X, Peng SL. Toll-like receptor 9 signaling protects against murine lupus. Arthr Rheum. 2006;54(1):336–42. doi: 10.1002/art.21553.CrossRefGoogle Scholar
  102. 102.
    Santiago-Raber ML, Dunand-Sauthier I, Wu T, Li QZ, Uematsu S, Akira S, et al. Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J Autoimmun. 2010;34(4):339–48. doi: 10.1016/j.jaut.2009.11.001.PubMedCrossRefGoogle Scholar
  103. 103.
    Yu P, Wellmann U, Kunder S, Quintanilla-Martinez L, Jennen L, Dear N, et al. Toll-like receptor 9-independent aggravation of glomerulonephritis in a novel model of SLE. Int Immunol. 2006;18(8):1211–9. doi: 10.1093/intimm/dxl067.PubMedCrossRefGoogle Scholar
  104. 104.
    Lartigue A, Courville P, Auquit I, Francois A, Arnoult C, Tron F, et al. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J Immunol. 2006;177(2):1349–54.PubMedGoogle Scholar
  105. 105.
    Pan ZJ, Maier S, Schwarz K, Azbill J, Akira S, Uematsu S, et al. Toll-like receptor 7 (TLR7) modulates anti-nucleosomal autoantibody isotype and renal complement deposition in mice exposed to syngeneic late apoptotic cells. Ann Rheum Dis. 2010;69(6):1195–9. doi: 10.1136/ard.2009.108282.PubMedCrossRefGoogle Scholar
  106. 106.
    Egner W. The use of laboratory tests in the diagnosis of SLE. J Clin Pathol. 2000;53(6):424–32.PubMedCrossRefGoogle Scholar
  107. 107.
    Aarden LA, de Groot ER, Feltkamp TE. Immunology of DNA. III. Crithidia luciliae, a simple substrate for the determination of anti-dsDNA with the immunofluorescence technique. Ann N Y Acad Sci. 1975;254:505–15.PubMedCrossRefGoogle Scholar
  108. 108.
    Hikida M, Kurosaki T. Regulation of phospholipase C-gamma2 networks in B lymphocytes. Adv Immunol. 2005;88:73–96. doi: 10.1016/S0065-2776(05)88003-4.PubMedCrossRefGoogle Scholar
  109. 109.
    Wang J, Shao Y, Bennett TA, Shankar RA, Wightman PD, Reddy LG. The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J Biol Chem. 2006;281(49):37427–34. doi: 10.1074/jbc.M605311200.PubMedCrossRefGoogle Scholar
  110. 110.
    Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull. 2005;28(5):886–92.PubMedCrossRefGoogle Scholar
  111. 111.
    Chuang TH, Ulevitch RJ. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw. 2000;11(3):372–8.PubMedGoogle Scholar
  112. 112.
    Bernasconi NL, Onai N, Lanzavecchia A. A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood. 2003;101(11):4500–4. doi: 10.1182/blood-2002-11-3569.PubMedCrossRefGoogle Scholar
  113. 113.
    Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science. 2002;298(5601):2199–202. doi: 10.1126/science.1076071.PubMedCrossRefGoogle Scholar
  114. 114.
    Bourke E, Bosisio D, Golay J, Polentarutti N, Mantovani A. The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood. 2003;102(3):956–63. doi: 10.1182/blood-2002-11-3355.PubMedCrossRefGoogle Scholar
  115. 115.
    Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, et al. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002;168(9):4531–7.PubMedGoogle Scholar
  116. 116.
    Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol. 2001;31(10):3026–37. doi: 10.1002/1521-4141(2001010)31:10<3026:AID-IMMU3026>3.0.CO;2-H.PubMedCrossRefGoogle Scholar
  117. 117.
    Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med. 2001;194(6):863–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol. 2001;31(11):3388–93. doi: 10.1002/1521-4141(200111)31:11<3388:AID-IMMU3388>3.0.CO;2-Q.PubMedCrossRefGoogle Scholar
  119. 119.
    Ito T, Amakawa R, Kaisho T, Hemmi H, Tajima K, Uehira K, et al. Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med. 2002;195(11):1507–12.PubMedCrossRefGoogle Scholar
  120. 120.
    Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179(4):1109–18.PubMedCrossRefGoogle Scholar
  121. 121.
    Hoene V, Peiser M, Wanner R. Human monocyte-derived dendritic cells express TLR9 and react directly to the CpG-A oligonucleotide D19. J Leukoc Biol. 2006;80(6):1328–36. doi: 10.1189/jlb.0106011.PubMedCrossRefGoogle Scholar
  122. 122.
    Kokkinopoulos I, Jordan WJ, Ritter MA. Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes. Mol Immunol. 2005;42(8):957–68. doi: 10.1016/j.molimm.2004.09.037.PubMedCrossRefGoogle Scholar
  123. 123.
    O’Mahony DS, Pham U, Iyer R, Hawn TR, Liles WC. Differential constitutive and cytokine-modulated expression of human Toll-like receptors in primary neutrophils, monocytes, and macrophages. Int J Med Sci. 2008;5(1):1–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Juarez E, Nunez C, Sada E, Ellner JJ, Schwander SK, Torres M. Differential expression of Toll-like receptors on human alveolar macrophages and autologous peripheral monocytes. Respir Res. 2010;11:2. doi: 10.1186/1465-9921-11-2.PubMedCrossRefGoogle Scholar
  125. 125.
    Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002;168(2):554–61.PubMedGoogle Scholar
  126. 126.
    Wong CK, Wong PT, Tam LS, Li EK, Chen DP, Lam CW. Activation profile of Toll-like receptors of peripheral blood lymphocytes in patients with systemic lupus erythematosus. Clin Exp Immunol. 2010;159(1):11–22. doi: 10.1111/j.1365-2249.2009.04036.x.PubMedCrossRefGoogle Scholar
  127. 127.
    Mao TK, Lian ZX, Selmi C, Ichiki Y, Ashwood P, Ansari AA, et al. Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology. 2005;42(4):802–8. doi: 10.1002/hep.20859.PubMedCrossRefGoogle Scholar
  128. 128.
    Miettinen M, Sareneva T, Julkunen I, Matikainen S. IFNs activate toll-like receptor gene expression in viral infections. Genes Immun. 2001;2(6):349–55. doi: 10.1038/sj.gene.6363791.PubMedCrossRefGoogle Scholar
  129. 129.
    Miettinen M, Veckman V, Latvala S, Sareneva T, Matikainen S, Julkunen I. Live Lactobacillus rhamnosus and Streptococcus pyogenes differentially regulate Toll-like receptor (TLR) gene expression in human primary macrophages. J Leukoc Biol. 2008;84(4):1092–100. doi: 10.1189/jlb.1206737.PubMedCrossRefGoogle Scholar
  130. 130.
    Fenhalls G, Squires GR, Stevens-Muller L, Bezuidenhout J, Amphlett G, Duncan K, et al. Associations between toll-like receptors and interleukin-4 in the lungs of patients with tuberculosis. Am J Respir Cell Mol Biol. 2003;29(1):28–38. doi: 10.1165/rcmb.2002-0163OC.PubMedCrossRefGoogle Scholar
  131. 131.
    Komatsuda A, Wakui H, Iwamoto K, Ozawa M, Togashi M, Masai R, et al. Up-regulated expression of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol. 2008;152(3):482–7. doi: 10.1111/j.1365-2249.2008.03646.x.PubMedCrossRefGoogle Scholar
  132. 132.
    Migita K, Miyashita T, Maeda Y, Nakamura M, Yatsuhashi H, Kimura H, et al. Toll-like receptor expression in lupus peripheral blood mononuclear cells. J Rheumatol. 2007;34(3):493–500.PubMedGoogle Scholar
  133. 133.
    Wu O, Chen GP, Chen H, Li XP, Xu JH, Zhao SS, et al. The expressions of Toll-like receptor 9 and T-bet in circulating B and T cells in newly diagnosed, untreated systemic lupus erythematosus and correlations with disease activity and laboratory data in a Chinese population. Immunobiology. 2009;214(5):392–402. doi: 10.1016/j.imbio.2008.10.004.PubMedCrossRefGoogle Scholar
  134. 134.
    Papadimitraki ED, Choulaki C, Koutala E, Bertsias G, Tsatsanis C, Gergianaki I, et al. Expansion of toll-like receptor 9-expressing B cells in active systemic lupus erythematosus: implications for the induction and maintenance of the autoimmune process. Arthr Rheum. 2006;54(11):3601–11. doi: 10.1002/art.22197.CrossRefGoogle Scholar
  135. 135.
    Nakano S, Morimoto S, Suzuki J, Nozawa K, Amano H, Tokano Y, et al. Role of pathogenic auto-antibody production by Toll-like receptor 9 of B cells in active systemic lupus erythematosus. Rheumatology (Oxford). 2008;47(2):145–9. doi: 10.1093/rheumatology/kem327.CrossRefGoogle Scholar
  136. 136.
    Jin O, Kavikondala S, Mok MY, Sun L, Gu J, Fu R, et al. Abnormalities in circulating plasmacytoid dendritic cells in patients with systemic lupus erythematosus. Arthr Res Ther. 2010;12(4):R137. doi: 10.1186/ar3075.CrossRefGoogle Scholar
  137. 137.
    Kawasaki A, Furukawa H, Kondo Y, Ito S, Hayashi T, Kusaoi M, et al. TLR7 single-nucleotide polymorphisms in the 3′ untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study. Arthr Res Ther. 2011;13(2):R41. doi: 10.1186/ar3277.CrossRefGoogle Scholar
  138. 138.
    Sanchez E, Callejas-Rubio JL, Sabio JM, Gonzalez-Gay MA, Jimenez-Alonso J, Mico L, et al. Investigation of TLR5 and TLR7 as candidate genes for susceptibility to systemic lupus erythematosus. Clin Exp Rheumatol. 2009;27(2):267–71.PubMedGoogle Scholar
  139. 139.
    Shen N, Fu Q, Deng Y, Qian X, Zhao J, Kaufman KM, et al. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci USA. 2010;107(36):15838–43. doi: 10.1073/pnas.1001337107.PubMedCrossRefGoogle Scholar
  140. 140.
    Garcia-Ortiz H, Velazquez-Cruz R, Espinosa-Rosales F, Jimenez-Morales S, Baca V, Orozco L. Association of TLR7 copy number variation with susceptibility to childhood-onset systemic lupus erythematosus in Mexican population. Ann Rheum Dis. 2010;69(10):1861–5. doi: 10.1136/ard.2009.124313.PubMedCrossRefGoogle Scholar
  141. 141.
    Kelley J, Johnson MR, Alarcon GS, Kimberly RP, Edberg JC. Variation in the relative copy number of the TLR7 gene in patients with systemic lupus erythematosus and healthy control subjects. Arthr Rheum. 2007;56(10):3375–8. doi: 10.1002/art.22916.CrossRefGoogle Scholar
  142. 142.
    Huang CM, Huang PH, Chen CL, Lin YJ, Tsai CH, Huang WL, et al. Association of toll-like receptor 9 gene polymorphism in Chinese patients with systemic lupus erythematosus in Taiwan. Rheumatol Int. 2011;. doi: 10.1007/s00296-011-1925-8.Google Scholar
  143. 143.
    Tao K, Fujii M, Tsukumo S, Maekawa Y, Kishihara K, Kimoto Y, et al. Genetic variations of Toll-like receptor 9 predispose to systemic lupus erythematosus in Japanese population. Ann Rheum Dis. 2007;66(7):905–9. doi: 10.1136/ard.2006.065961.PubMedCrossRefGoogle Scholar
  144. 144.
    Ng MW, Lau CS, Chan TM, Wong WH, Lau YL. Polymorphisms of the toll-like receptor 9 (TLR9) gene with systemic lupus erythematosus in Chinese. Rheumatology (Oxford). 2005;44(11):1456–7. doi: 10.1093/rheumatology/kei120.CrossRefGoogle Scholar
  145. 145.
    Hur JW, Shin HD, Park BL, Kim LH, Kim SY, Bae SC. Association study of Toll-like receptor 9 gene polymorphism in Korean patients with systemic lupus erythematosus. Tissue Antigens. 2005;65(3):266–70. doi: 10.1111/j.1399-0039.2005.00374.x.PubMedCrossRefGoogle Scholar
  146. 146.
    De Jager PL, Richardson A, Vyse TJ, Rioux JD. Genetic variation in toll-like receptor 9 and susceptibility to systemic lupus erythematosus. Arthr Rheum. 2006;54(4):1279–82. doi: 10.1002/art.21755.CrossRefGoogle Scholar
  147. 147.
    Dos Santos BP, Valverde JV, Rohr P, Monticielo OA, Brenol JC, Xavier RM, et al. TLR7/8/9 polymorphisms and their associations in systemic lupus erythematosus patients from Southern Brazil. Lupus. 2011;. doi: 10.1177/0961203311425522.Google Scholar
  148. 148.
    Demirci FY, Manzi S, Ramsey-Goldman R, Kenney M, Shaw PS, Dunlop-Thomas CM, et al. Association study of Toll-like receptor 5 (TLR5) and Toll-like receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus. J Rheumatol. 2007;34(8):1708–11.PubMedGoogle Scholar
  149. 149.
    Xu CJ, Zhang WH, Pan HF, Li XP, Xu JH, Ye DQ. Association study of a single nucleotide polymorphism in the exon 2 region of toll-like receptor 9 (TLR9) gene with susceptibility to systemic lupus erythematosus among Chinese. Mol Biol Rep. 2009;36(8):2245–8. doi: 10.1007/s11033-008-9440-z.PubMedCrossRefGoogle Scholar
  150. 150.
    Hamann L, Glaeser C, Hamprecht A, Gross M, Gomma A, Schumann RR. Toll-like receptor (TLR)-9 promotor polymorphisms and atherosclerosis. Clin Chim Acta. 2006;364(1–2):303–7. doi: 10.1016/j.cca.2005.07.017.PubMedCrossRefGoogle Scholar
  151. 151.
    Ng MT. Van’t Hof R, Crockett JC, Hope ME, Berry S, Thomson J et al. Increase in NF-kappaB binding affinity of the variant C allele of the toll-like receptor 9–1237T/C polymorphism is associated with Helicobacter pylori-induced gastric disease. Infect Immun. 2010;78(3):1345–52. doi: 10.1128/IAI.01226-09.PubMedCrossRefGoogle Scholar
  152. 152.
    Novak N, Yu CF, Bussmann C, Maintz L, Peng WM, Hart J, et al. Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy. 2007;62(7):766–72. doi: 10.1111/j.1398-9995.2007.01358.x.PubMedCrossRefGoogle Scholar
  153. 153.
    Gaipl US, Munoz LE, Grossmayer G, Lauber K, Franz S, Sarter K, et al. Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun. 2007;28(2–3):114–21. doi: 10.1016/j.jaut.2007.02.005.PubMedCrossRefGoogle Scholar
  154. 154.
    Hepburn AL, Lampert IA, Boyle JJ, Horncastle D, Ng WF, Layton M, et al. In vivo evidence for apoptosis in the bone marrow in systemic lupus erythematosus. Ann Rheum Dis. 2007;66(8):1106–9. doi: 10.1136/ard.2006.065003.PubMedCrossRefGoogle Scholar
  155. 155.
    Kuhn A, Herrmann M, Kleber S, Beckmann-Welle M, Fehsel K, Martin-Villalba A, et al. Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. Arthr Rheum. 2006;54(3):939–50. doi: 10.1002/art.21658.CrossRefGoogle Scholar
  156. 156.
    Perniok A, Wedekind F, Herrmann M, Specker C, Schneider M. High levels of circulating early apoptic peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus. 1998;7(2):113–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Donnelly S, Roake W, Brown S, Young P, Naik H, Wordsworth P, et al. Impaired recognition of apoptotic neutrophils by the C1q/calreticulin and CD91 pathway in systemic lupus erythematosus. Arthr Rheum. 2006;54(5):1543–56. doi: 10.1002/art.21783.CrossRefGoogle Scholar
  158. 158.
    Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS. Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthr Rheum. 2003;48(10):2888–97. doi: 10.1002/art.11237.CrossRefGoogle Scholar
  159. 159.
    Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41. doi: 10.1083/jcb.200606027.PubMedCrossRefGoogle Scholar
  160. 160.
    Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P. Vanden Berghe T. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 2011;18(4):581–8. doi: 10.1038/cdd.2011.1.PubMedCrossRefGoogle Scholar
  161. 161.
    Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187(1):538–52. doi: 10.4049/jimmunol.1100450.PubMedCrossRefGoogle Scholar
  162. 162.
    Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010;107(21):9813–8. doi: 10.1073/pnas.0909927107.PubMedCrossRefGoogle Scholar
  163. 163.
    Tas SW, Quartier P, Botto M, Fossati-Jimack L. Macrophages from patients with SLE and rheumatoid arthritis have defective adhesion in vitro, while only SLE macrophages have impaired uptake of apoptotic cells. Ann Rheum Dis. 2006;65(2):216–21. doi: 10.1136/ard.2005.037143.PubMedCrossRefGoogle Scholar
  164. 164.
    Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthr Rheum. 1998;41(7):1241–50. doi: 10.1002/1529-0131(199807)41:7<1241:AID-ART15>3.0.CO;2-H.CrossRefGoogle Scholar
  165. 165.
    Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U, Neuhuber WL, et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthr Rheum. 2002;46(1):191–201. doi: 10.1002/1529-0131(200201)46:1<191:AID-ART10027>3.0.CO;2-K.CrossRefGoogle Scholar
  166. 166.
    Korb LC, Ahearn JM. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol. 1997;158(10):4525–8.PubMedGoogle Scholar
  167. 167.
    Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM. The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol. 2001;166(5):3231–9.PubMedGoogle Scholar
  168. 168.
    Taylor PR, Carugati A, Fadok VA, Cook HT, Andrews M, Carroll MC, et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med. 2000;192(3):359–66.PubMedCrossRefGoogle Scholar
  169. 169.
    Carroll MC. A protective role for innate immunity in systemic lupus erythematosus. Nat Rev Immunol. 2004;4(10):825–31. doi: 10.1038/nri1456170.PubMedCrossRefGoogle Scholar
  170. 170.
    Arkwright PD, Abinun M, Cant AJ. Autoimmunity in human primary immunodeficiency diseases. Blood. 2002;99(8):2694–702.PubMedCrossRefGoogle Scholar
  171. 171.
    Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet. 1998;19(1):56–9. doi: 10.1038/ng0598-56.PubMedCrossRefGoogle Scholar
  172. 172.
    Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet. 2000;25(2):177–81. doi: 10.1038/76032.PubMedCrossRefGoogle Scholar
  173. 173.
    Tinazzi E, Puccetti A, Gerli R, Rigo A, Migliorini P, Simeoni S, et al. Serum DNase I, soluble Fas/FasL levels and cell surface Fas expression in patients with SLE: a possible explanation for the lack of efficacy of hrDNase I treatment. Int Immunol. 2009;21(3):237–43. doi: 10.1093/intimm/dxn142.PubMedCrossRefGoogle Scholar
  174. 174.
    Martinez-Valle F, Balada E, Ordi-Ros J, Bujan-Rivas S, Sellas-Fernandez A, Vilardell-Tarres M. DNase 1 activity in patients with systemic lupus erythematosus: relationship with epidemiological, clinical, immunological and therapeutical features. Lupus. 2009;18(5):418–23. doi: 10.1177/0961203308098189.PubMedCrossRefGoogle Scholar
  175. 175.
    Yasutomo K, Horiuchi T, Kagami S, Tsukamoto H, Hashimura C, Urushihara M, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet. 2001;28(4):313–4. doi: 10.1038/91070.PubMedCrossRefGoogle Scholar
  176. 176.
    Puccetti A, Madaio MP, Bellese G, Migliorini P. Anti-DNA antibodies bind to DNase I. J Exp Med. 1995;181(5):1797–804.PubMedCrossRefGoogle Scholar
  177. 177.
    Yeh TM, Chang HC, Liang CC, Wu JJ, Liu MF. Deoxyribonuclease-inhibitory antibodies in systemic lupus erythematosus. J Biomed Sci. 2003;10(5):544–51. doi: 10.1159/000072382.PubMedCrossRefGoogle Scholar
  178. 178.
    Al-Mayouf SM, Sunker A, Abdwani R, Abrawi SA, Almurshedi F, Alhashmi N, et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet. 2011;. doi: 10.1038/ng.975.PubMedGoogle Scholar
  179. 179.
    Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32(3):305–15. doi: 10.1016/j.immuni.2010.03.012.PubMedCrossRefGoogle Scholar
  180. 180.
    Yasuda K, Yu P, Kirschning CJ, Schlatter B, Schmitz F, Heit A, et al. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol. 2005;174(10):6129–36.PubMedGoogle Scholar
  181. 181.
    Barton GM, Kagan JC, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol. 2006;7(1):49–56. doi: 10.1038/ni1280.PubMedCrossRefGoogle Scholar
  182. 182.
    Yasuda K, Ogawa Y, Kishimoto M, Takagi T, Hashida M, Takakura Y. Plasmid DNA activates murine macrophages to induce inflammatory cytokines in a CpG motif-independent manner by complex formation with cationic liposomes. Biochem Biophys Res Commun. 2002;293(1):344–8. doi: 10.1016/S0006-291X(02)00210-3.PubMedCrossRefGoogle Scholar
  183. 183.
    Yasuda K, Kawano H, Yamane I, Ogawa Y, Yoshinaga T, Nishikawa M, et al. Restricted cytokine production from mouse peritoneal macrophages in culture in spite of extensive uptake of plasmid DNA. Immunology. 2004;111(3):282–90.PubMedCrossRefGoogle Scholar
  184. 184.
    Yasuda K, Rutz M, Schlatter B, Metzger J, Luppa PB, Schmitz F, et al. CpG motif-independent activation of TLR9 upon endosomal translocation of “natural” phosphodiester DNA. Eur J Immunol. 2006;36(2):431–6. doi: 10.1002/eji.200535210.PubMedCrossRefGoogle Scholar
  185. 185.
    Yoshinaga T, Yasuda K, Ogawa Y, Nishikawa M, Takakura Y. DNA and its cationic lipid complexes induce CpG motif-dependent activation of murine dendritic cells. Immunology. 2007;120(3):295–302. doi: 10.1111/j.1365-2567.2006.02451.x.PubMedCrossRefGoogle Scholar
  186. 186.
    Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CG, Bijl M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthr Res Ther. 2011;13(3):R71. doi: 10.1186/ar3332.CrossRefGoogle Scholar
  187. 187.
    Ma CY, Jiao YL, Zhang J, Yang QR, Zhang ZF, Shen YJ, et al. Elevated plasma level of HMGB1 is associated with disease activity and combined alterations with IFN-alpha and TNF-alpha in systemic lupus erythematosus. Rheumatol Int. 2010;. doi: 10.1007/s00296-010-1636-6.Google Scholar
  188. 188.
    Sun CL, Zhang FZ, Li P, Bi LQ. LL-37 expression in the skin in systemic lupus erythematosus. Lupus. 2011;20(9):904–11. doi: 10.1177/0961203311398515.PubMedCrossRefGoogle Scholar
  189. 189.
    Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–94. doi: 10.1084/jem.20090480.PubMedCrossRefGoogle Scholar
  190. 190.
    Vollmer J, Tluk S, Schmitz C, Hamm S, Jurk M, Forsbach A, et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med. 2005;202(11):1575–85. doi: 10.1084/jem.20051696.PubMedCrossRefGoogle Scholar
  191. 191.
    Roberts TL, Turner ML, Dunn JA, Lenert P, Ross IL, Sweet MJ, et al. B cells do not take up bacterial DNA: an essential role for antigen in exposure of DNA to toll-like receptor-9. Immunol Cell Biol. 2011;89(4):517–25. doi: 10.1038/icb.2010.112.PubMedCrossRefGoogle Scholar
  192. 192.
    Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak-Rothstein A. Activation of autoreactive B cells by CpG dsDNA. Immunity. 2003;19(6):837–47.PubMedCrossRefGoogle Scholar
  193. 193.
    Batteux F, Palmer P, Daeron M, Weill B, Lebon P. FCgammaRII (CD32)-dependent induction of interferon-alpha by serum from patients with lupus erythematosus. Eur Cytokine Netw. 1999;10(4):509–14.PubMedGoogle Scholar
  194. 194.
    Preble OT, Black RJ, Friedman RM, Klippel JH, Vilcek J. Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science. 1982;216(4544):429–31.PubMedCrossRefGoogle Scholar
  195. 195.
    Ronnblom L, Alm GV. An etiopathogenic role for the type I IFN system in SLE. Trends Immunol. 2001;22(8):427–31.PubMedCrossRefGoogle Scholar
  196. 196.
    Obermoser G, Pascual V. The interferon-alpha signature of systemic lupus erythematosus. Lupus. 2010;19(9):1012–9. doi: 10.1177/0961203310371161.PubMedCrossRefGoogle Scholar
  197. 197.
    Cederblad B, Blomberg S, Vallin H, Perers A, Alm GV, Ronnblom L. Patients with systemic lupus erythematosus have reduced numbers of circulating natural interferon-alpha- producing cells. J Autoimmun. 1998;11(5):465–70. doi: 10.1006/jaut.1998.0215.PubMedCrossRefGoogle Scholar
  198. 198.
    Bave U, Magnusson M, Eloranta ML, Perers A, Alm GV, Ronnblom L. Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol. 2003;171(6):3296–302.PubMedGoogle Scholar
  199. 199.
    Boule MW, Broughton C, Mackay F, Akira S, Marshak-Rothstein A, Rifkin IR. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med. 2004;199(12):1631–40. doi: 10.1084/jem.20031942.PubMedCrossRefGoogle Scholar
  200. 200.
    Frisoni L, McPhie L, Colonna L, Sriram U, Monestier M, Gallucci S, et al. Nuclear autoantigen translocation and autoantibody opsonization lead to increased dendritic cell phagocytosis and presentation of nuclear antigens: a novel pathogenic pathway for autoimmunity? J Immunol. 2005;175(4):2692–701.PubMedGoogle Scholar
  201. 201.
    Munoz LE, Janko C, Grossmayer GE, Frey B, Voll RE, Kern P, et al. Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthr Rheum. 2009;60(6):1733–42. doi: 10.1002/art.24535.CrossRefGoogle Scholar
  202. 202.
    Montier T, Benvegnu T, Jaffres PA, Yaouanc JJ, Lehn P. Progress in cationic lipid-mediated gene transfection: a series of bio-inspired lipids as an example. Curr Gene Ther. 2008;8(5):296–312.PubMedCrossRefGoogle Scholar
  203. 203.
    Audouy S, Hoekstra D. Cationic lipid-mediated transfection in vitro and in vivo (review). Mol Membr Biol. 2001;18(2):129–43.PubMedCrossRefGoogle Scholar
  204. 204.
    Gursel I, Gursel M, Ishii KJ, Klinman DM. Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J Immunol. 2001;167(6):3324–8.PubMedGoogle Scholar
  205. 205.
    Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9. doi: 10.1126/science.1093620.PubMedCrossRefGoogle Scholar
  206. 206.
    Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11(3):263–70. doi: 10.1038/nm1191.PubMedCrossRefGoogle Scholar
  207. 207.
    Hurtado P, Peh CA. LL-37 promotes rapid sensing of CpG oligodeoxynucleotides by B lymphocytes and plasmacytoid dendritic cells. J Immunol. 2010;184(3):1425–35. doi: 10.4049/jimmunol.0902305.PubMedCrossRefGoogle Scholar
  208. 208.
    Yang D, de la Rosa G, Tewary P, Oppenheim JJ. Alarmins link neutrophils and dendritic cells. Trends Immunol. 2009;30(11):531–7. doi: 10.1016/ Scholar
  209. 209.
    Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15(6):623–5. doi: 10.1038/nm.1959.PubMedCrossRefGoogle Scholar
  210. 210.
    Stott K, Tang GS, Lee KB, Thomas JO. Structure of a complex of tandem HMG boxes and DNA. J Mol Biol. 2006;360(1):90–104. doi: 10.1016/j.jmb.2006.04.059.PubMedCrossRefGoogle Scholar
  211. 211.
    Krieg AM. TLR9 and DNA ‘feel’ RAGE. Nat Immunol. 2007;8(5):475–7. doi: 10.1038/ni0507-475.PubMedCrossRefGoogle Scholar
  212. 212.
    Jiang W, Bell CW, Pisetsky DS. The relationship between apoptosis and high-mobility group protein 1 release from murine macrophages stimulated with lipopolysaccharide or polyinosinic-polycytidylic acid. J Immunol. 2007;178(10):6495–503.PubMedGoogle Scholar
  213. 213.
    Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood. 2007;110(6):1970–81. doi: 10.1182/blood-2006-09-044776.PubMedCrossRefGoogle Scholar
  214. 214.
    Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8(5):487–96. doi: 10.1038/ni1457.PubMedCrossRefGoogle Scholar
  215. 215.
    Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 2009;462(7269):99–103. doi: 10.1038/nature08512.PubMedCrossRefGoogle Scholar
  216. 216.
    Park B, Buti L, Lee S, Matsuwaki T, Spooner E, Brinkmann MM, et al. Granulin is a soluble cofactor for toll-like receptor 9 signaling. Immunity. 2011;34(4):505–13. doi: S10.1016/j.immuni.2011.01.018.PubMedCrossRefGoogle Scholar
  217. 217.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84. doi: 10.1038/ni.1863.PubMedCrossRefGoogle Scholar
  218. 218.
    Hacker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998;17(21):6230–40. doi: 10.1093/emboj/17.21.6230.PubMedCrossRefGoogle Scholar
  219. 219.
    Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol. 2004;34(9):2541–50. doi: 10.1002/eji.200425218.PubMedCrossRefGoogle Scholar
  220. 220.
    Heil F, Ahmad-Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T, et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol. 2003;33(11):2987–97. doi: 10.1002/eji.200324238.PubMedCrossRefGoogle Scholar
  221. 221.
    Lee J, Chuang TH, Redecke V, She L, Pitha PM, Carson DA, et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci USA. 2003;100(11):6646–51. doi: 10.1073/pnas.0631696100.PubMedCrossRefGoogle Scholar
  222. 222.
    Russo C, Cornella-Taracido I, Galli-Stampino L, Jain R, Harrington E, Isome Y, et al. Small molecule Toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells. Blood. 2011;117(21):5683–91. doi: 10.1182/blood-2010-12-328138.PubMedCrossRefGoogle Scholar
  223. 223.
    Fukui R, Saitoh S, Kanno A, Onji M, Shibata T, Ito A, et al. Unc93B1 restricts systemic lethal inflammation by orchestrating Toll-like receptor 7 and 9 trafficking. Immunity. 2011;35(1):69–81. doi: 10.1016/j.immuni.2011.05.010.PubMedCrossRefGoogle Scholar
  224. 224.
    Fukui R, Saitoh S, Matsumoto F, Kozuka-Hata H, Oyama M, Tabeta K, et al. Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. J Exp Med. 2009;206(6):1339–50. doi: 10.1084/jem.20082316.PubMedCrossRefGoogle Scholar
  225. 225.
    Isnardi I, Ng YS, Srdanovic I, Motaghedi R, Rudchenko S, von Bernuth H, et al. IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity. 2008;29(5):746–57. doi: 10.1016/j.immuni.2008.09.015.PubMedCrossRefGoogle Scholar
  226. 226.
    Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, Endres S, et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol. 2005;174(7):4043–50.PubMedGoogle Scholar
  227. 227.
    Herve M, Isnardi I, Ng YS, Bussel JB, Ochs HD, Cunningham-Rundles C, et al. CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J Exp Med. 2007;204(7):1583–93. doi: 10.1084/jem.20062287.PubMedCrossRefGoogle Scholar
  228. 228.
    Crispin JC, Martinez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun. 2003;21(3):273–6.PubMedCrossRefGoogle Scholar
  229. 229.
    Liu MF, Wang CR, Fung LL, Wu CR. Decreased CD4+CD25+ T cells in peripheral blood of patients with systemic lupus erythematosus. Scand J Immunol. 2004;59(2):198–202.PubMedCrossRefGoogle Scholar
  230. 230.
    Barreto M, Ferreira RC, Lourenco L, Moraes-Fontes MF, Santos E, Alves M, et al. Low frequency of CD4+CD25+ Treg in SLE patients: a heritable trait associated with CTLA4 and TGFbeta gene variants. BMC Immunol. 2009;10:5. doi: 10.1186/1471-2172-10-5.PubMedCrossRefGoogle Scholar
  231. 231.
    Mellor-Pita S, Citores MJ, Castejon R, Tutor-Ureta P, Yebra-Bango M, Andreu JL, et al. Decrease of regulatory T cells in patients with systemic lupus erythematosus. Ann Rheum Dis. 2006;65(4):553–4. doi: 10.1136/ard.2005.044974.PubMedCrossRefGoogle Scholar
  232. 232.
    Hisaeda H, Tetsutani K, Imai T, Moriya C, Tu L, Hamano S, et al. Malaria parasites require TLR9 signaling for immune evasion by activating regulatory T cells. J Immunol. 2008;180(4):2496–503.PubMedGoogle Scholar
  233. 233.
    Hackl D, Loschko J, Sparwasser T, Reindl W, Krug AB. Activation of dendritic cells via TLR7 reduces Foxp3 expression and suppressive function in induced Tregs. Eur J Immunol. 2011;41(5):1334–43. doi: 10.1002/eji.201041014.PubMedCrossRefGoogle Scholar
  234. 234.
    Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299(5609):1033–6. doi: 10.1126/science.1078231.PubMedCrossRefGoogle Scholar
  235. 235.
    Anz D, Koelzer VH, Moder S, Thaler R, Schwerd T, Lahl K, et al. Immunostimulatory RNA blocks suppression by regulatory T cells. J Immunol. 2010;184(2):939–46. doi: 10.4049/jimmunol.0901245.PubMedCrossRefGoogle Scholar
  236. 236.
    Moseman EA, Liang X, Dawson AJ, Panoskaltsis-Mortari A, Krieg AM, Liu YJ, et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J Immunol. 2004;173(7):4433–42.PubMedGoogle Scholar
  237. 237.
    Ito T, Yang M, Wang YH, Lande R, Gregorio J, Perng OA, et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med. 2007;204(1):105–15. doi: 10.1084/jem.20061660.PubMedCrossRefGoogle Scholar
  238. 238.
    Matta BM, Castellaneta A, Thomson AW. Tolerogenic plasmacytoid DC. Eur J Immunol. 2010;40(10):2667–76. doi: 10.1002/eji.201040839.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore

Personalised recommendations