Immunologic Research

, Volume 51, Issue 2–3, pp 205–214 | Cite as

Innate and adaptive immunity to the nematode Strongyloides stercoralis in a mouse model

  • Sandra Bonne-Année
  • Jessica A. Hess
  • David Abraham
Current Immunology Research at Jefferson


Mice have been used to the study the mechanisms of protective innate and adaptive immunity to larval Strongyloides stercoralis. During primary infection, neutrophils and eosinophils are attracted by parasite components and kill the larvae by release of granule products. Eosinophils also function as antigen-presenting cells for the induction of a Th2 response. B cells produce both IgM and IgG that collaborate with neutrophils to kill worms in the adaptive immune response. Vaccine studies have identified a recombinant diagnostic antigen that induced high levels of immunity to infection with S. stercoralis in mice. These studies demonstrate that there are redundancies in the mechanisms used by the immune response to kill the parasite and that a vaccine with a single antigen may be suitable as a prophylactic vaccine to prevent human strongyloidiasis.


Strongyloidesstercoralis Innate immunity Adaptive immunity Th2 cells B cells IgG IgM Complement Neutrophils Eosinophils Antigen-presenting cell Ss-IR Recombinant vaccine 



This research was supported in part by the Edna McConnell Foundation and by National Institutes of Health grants RO1AI47189 and 1R56AI076345. We acknowledge the contributions made by past members of the laboratory to the findings presented in this review: Richard Brigandi, Ann Marie Galioto, Frances Haberstroh, De’Broski Herbert, Larua Kerepesi, Alejandro Krolewiecki, Ofra Leon, Amy O’Connell, Udaikumar Padigel, Kevin Redding, Harris Rotman, Louis Stein, and Wiboonchai Yutanawiboonchai. We thank our past and present collaborators for their assistance with the studies discussed in this review: James Lee, James Lok, Sara Lustigman, Thomas Nolan, Thomas Nutman, and Gerhard Schad,.


  1. 1.
    Olsen A, van Lieshout L, Marti H, Polderman T, Polman K, Steinmann P, Stothard R, Thybo S, Verweij JJ, Magnussen P. Strongyloidiasis—the most neglected of the neglected tropical diseases? Trans R Soc Trop Med Hyg. 2009;103:967–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006;367:1521–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Croker C, Reporter R, Redelings M, Mascola L. Strongyloidiasis-related deaths in the United States, 1991–2006. Am J Trop Med Hyg. 2010;83:422–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Krolewiecki AJ, Ramanathan R, Fink V, McAuliffe I, Cajal SP, Won K, Juarez M, Di Paolo A, Tapia L, Acosta N, Lee R, Lammie P, Abraham D, Nutman TB. Improved diagnosis of Strongyloides stercoralis using recombinant antigen-based serologies in a community-wide study in northern Argentina. Clin Vaccine Immunol. 2010;17:1624–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Montes M, Sawhney C, Barros N. Strongyloides stercoralis: there but not seen. Curr Opin Infect Dis. 2010;23:500–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Keiser PB, Nutman TB. Strongyloides stercoralis in the immunocompromised population. Clin Microbiol Rev. 2004;17:208–17.PubMedCrossRefGoogle Scholar
  7. 7.
    Marcos LA, Terashima A, Dupont HL, Gotuzzo E. Strongyloides hyperinfection syndrome: an emerging global infectious disease. Trans R Soc Trop Med Hyg. 2008;102:314–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Montes M, Sanchez C, Verdonck K, Lake JE, Gonzalez E, Lopez G, Terashima A, Nolan T, Lewis DE, Gotuzzo E, White AC Jr. Regulatory T cell expansion in HTLV-1 and strongyloidiasis co-infection is associated with reduced IL-5 responses to Strongyloides stercoralis antigen. PLoS Negl Trop Dis. 2009;3:e456.PubMedCrossRefGoogle Scholar
  9. 9.
    Ramanathan R, Nutman T. Strongyloides stercoralis infection in the immunocompromised host. Curr Infect Dis Rep. 2008;10:105–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Horton J. Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology. 2000;121(Suppl):S113–32.PubMedCrossRefGoogle Scholar
  11. 11.
    Ikeda T. Pharmacological effects of ivermectin, an antiparasitic agent for intestinal strongyloidiasis: its mode of action and clinical efficacy. Nihon Yakurigaku Zasshi. 2003;122:527–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Brigandi RA, Rotman HL, Leon O, Nolan TJ, Schad GA, Abraham D. Strongyloides stercoralis host-adapted third-stage larvae are the target of eosinophil-associated immune-mediated killing in mice. J Parasitol. 1998;84:440–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Brigandi RA, Rotman HL, Nolan TJ, Schad GA, Abraham D. Chronicity in Strongyloides stercoralis infections: dichotomy of the protective immune response to infective and autoinfective larvae in a mouse model. Am J Trop Med Hyg. 1997;56:640–6.PubMedGoogle Scholar
  14. 14.
    Maruyama H, Nishimaki A, Takuma Y, Kurimoto M, Suzuki T, Sakatoku Y, Ishikawa M, Ohta N. Successive changes in tissue migration capacity of developing larvae of an intestinal nematode, Strongyloides venezuelensis. Parasitology. 2006;132:411–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Machado ER, Carlos D, Sorgi CA, Ramos SG, Souza DI, Soares EG, Costa-Cruz JM, Ueta MT, Aronoff DM, Faccioli LH. Dexamethasone effects in the Strongyloides venezuelensis infection in a murine model. Am J Trop Med Hyg. 2011;84:957–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Viney M. How do host immune responses affect nematode infections? Trends Parasitol. 2002;18:63–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Viney ME. The biology and genomics of Strongyloides. Med Microbiol Immunol. 2006;195:49–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshida A, Nagayasu E, Nishimaki A, Sawaguchi A, Yanagawa S, Maruyama H. Transcripts analysis of infective larvae of an intestinal nematode, Strongyloides venezuelensis. Parasitol Int. 2011;60:75–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Dawkins HJ, Grove DI. Attempts to establish infections with Strongyloides stercoralis in mice and other laboratory animals. J Helminthol. 1982;56:23–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Rotman HL, Yutanawiboonchai W, Brigandi RA, Leon O, Nolan TJ, Schad GA, Abraham D. Strongyloides stercoralis: complete life cycle in SCID mice. Exp Parasitol. 1995;81:136–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Machado ER, Carlos D, Lourenco EV, Souza GE, Sorgi CA, Silva EV, Ueta MT, Ramos SG, Aronoff DM, Faccioli LH. Cyclooxygenase-derived mediators regulate the immunological control of Strongyloides venezuelensis infection. FEMS Immunol Med Microbiol. 2010;59:18–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Abraham D, Rotman HL, Haberstroh HF, Yutanawiboonchai W, Brigandi RA, Leon O, Nolan TJ, Schad GA. Strongyloides stercoralis: protective immunity to third-stage larvae inBALB/cByJ mice. Exp Parasitol. 1995;80:297–307.PubMedCrossRefGoogle Scholar
  23. 23.
    O’Connell AE, Hess JA, Santiago GA, Nolan TJ, Lok JB, Lee JJ, Abraham D. Major basic protein from eosinophils and myeloperoxidase from neutrophils are required for protective immunity to Strongyloides stercoralis in mice. Infect Immun. 2011;79:2770–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Dawkins HJ, Muir GM, Grove DI. Histopathological appearances in primary and secondary infections with Strongyloides ratti in mice. Int J Parasitol. 1981;11:97–103.PubMedCrossRefGoogle Scholar
  25. 25.
    McHugh TD, Jenkins T, McLaren DJ. Strongyloides ratti: studies of cutaneous reactions elicited in naive and sensitized rats and of changes in surface antigenicity of skin-penetrating larvae. Parasitology. 1989;98(Pt 1):95–103.PubMedCrossRefGoogle Scholar
  26. 26.
    Watanabe K, Noda K, Hamano S, Koga M, Kishihara K, Nomoto K, Tada I. The crucial role of granulocytes in the early host defense against Strongyloides ratti infection in mice. Parasitol Res. 2000;86:188–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Galioto AM, Hess JA, Nolan TJ, Schad GA, Lee JJ, Abraham D. Role of eosinophils and neutrophils in innate and adaptive protective immunity to larval Strongyloides stercoralis in mice. Infect Immun. 2006;74:5730–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Padigel UM, Stein L, Redding K, Lee JJ, Nolan TJ, Schad GA, Birnbaumer L, Abraham D. Signaling through Galphai2 protein is required for recruitment of neutrophils for antibody-mediated elimination of larval Strongyloides stercoralis in mice. J Leukoc Biol. 2007;81:1120–6.PubMedCrossRefGoogle Scholar
  29. 29.
    O’Connell AE, Redding KM, Hess JA, Lok JB, Nolan TJ, Abraham D. Soluble extract from the nematode Strongyloides stercoralis induces CXCR2 dependent/IL-17 independent neutrophil recruitment. Microbes Infect. 2011;13:536–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Lalani T, Simmons RK, Ahmed AR. Biology of IL-5 in health and disease. Ann Allergy Asthma Immunol. 1999;82:317–32, 332–3.PubMedCrossRefGoogle Scholar
  31. 31.
    Roboz GJ, Rafii S. Interleukin-5 and the regulation of eosinophil production. Curr Opin Hematol. 1999;6:164–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Watanabe K, Sasaki O, Hamano S, Kishihara K, Nomoto K, Tada I, Aoki Y. Strongyloides ratti: the role of interleukin-5 in protection against tissue migrating larvae and intestinal adult worms. J Helminthol. 2003;77:355–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Herbert DR, Lee JJ, Lee NA, Nolan TJ, Schad GA, Abraham D. Role of IL-5 in innate and adaptive immunity to larval Strongyloides stercoralis in mice. J Immunol. 2000;165:4544–51.PubMedGoogle Scholar
  34. 34.
    Rotman HL, Yutanawiboonchai W, Brigandi RA, Leon O, Gleich GJ, Nolan TJ, Schad GA, Abraham D. Strongyloides stercoralis: eosinophil-dependent immune-mediated killing of third stage larvae in BALB/cByJ mice. Exp Parasitol. 1996;82:267–78.PubMedCrossRefGoogle Scholar
  35. 35.
    Jong EC, Mahmoud AA, Klebanoff SJ. Peroxidase-mediated toxicity to schistosomula of Schistosoma mansoni. J Immunol. 1981;126:468–71.PubMedGoogle Scholar
  36. 36.
    Brennan ML, Wu W, Fu X, Shen Z, Song W, Frost H, Vadseth C, Narine L, Lenkiewicz E, Borchers MT, Lusis AJ, Lee JJ, Lee NA, Abu-Soud HM, Ischiropoulos H, Hazen SL. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem. 2002;277:17415–27.PubMedCrossRefGoogle Scholar
  37. 37.
    Spalteholz H, Panasenko OM, Arnhold J. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase. Arch Biochem Biophys. 2006;445:225–34.PubMedCrossRefGoogle Scholar
  38. 38.
    Borelli V, Vita F, Shankar S, Soranzo MR, Banfi E, Scialino G, Brochetta C, Zabucchi G. Human eosinophil peroxidase induces surface alteration, killing, and lysis of Mycobacterium tuberculosis. Infect Immun. 2003;71:605–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Stein LH, Redding KM, Lee JJ, Nolan TJ, Schad GA, Lok JB, Abraham D. Eosinophils utilize multiple chemokine receptors for chemotaxis to the parasitic nematode Strongyloides stercoralis. J Innate Immun. 2009;1:618–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, Lee JJ, Appleton JA. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol. 2009;182:1577–83.PubMedGoogle Scholar
  41. 41.
    Brigandi RA, Rotman HL, Yutanawiboonchai W, Leon O, Nolan TJ, Schad GA, Abraham D. Strongyloides stercoralis: role of antibody and complement in immunity to the third stage of larvae in BALB/cByJ mice. Exp Parasitol. 1996;82:279–89.PubMedCrossRefGoogle Scholar
  42. 42.
    Kerepesi LA, Hess JA, Nolan TJ, Schad GA, Abraham D. Complement component C3 is required for protective innate and adaptive immunity to larval Strongyloides stercoralis in mice. J Immunol. 2006;176:4315–22.PubMedGoogle Scholar
  43. 43.
    de Messias IJ, Genta RM, Mohren WD. Adherence of monocytes and polymorphonuclear cells to infective larvae of Strongyloides stercoralis after complement activation. J Parasitol. 1994;80:267–74.PubMedCrossRefGoogle Scholar
  44. 44.
    Grove DI, Northern C, Dawkins HJ. Interactions of Strongyloides ratti free-living and skin-penetrated infective larvae and parasitic adults with serum and cells in vitro. Aust J Exp Biol Med Sci. 1985;63(Pt 5):521–9.PubMedGoogle Scholar
  45. 45.
    Padigel UM, Hess JA, Lee JJ, Lok JB, Nolan TJ, Schad GA, Abraham D. Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. J Infect Dis. 2007;196:1844–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Padigel UM, Lee JJ, Nolan TJ, Schad GA, Abraham D. Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect Immun. 2006;74:3232–8.PubMedCrossRefGoogle Scholar
  47. 47.
    MacKenzie JR, Mattes J, Dent LA, Foster PS. Eosinophils promote allergic disease of the lung by regulating CD4(+) Th2 lymphocyte function. J Immunol. 2001;167:3146–55.PubMedGoogle Scholar
  48. 48.
    Shi HZ. Eosinophils function as antigen-presenting cells. J Leukoc Biol. 2004;76:520–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Xie ZF, Shi HZ, Qin XJ, Kang LF, Huang CP, Chen YQ. Effects of antigen presentation of eosinophils on lung Th1/Th2 imbalance. Chin Med J (Engl). 2005;118:6–11.Google Scholar
  50. 50.
    Neva FA, Filho JO, Gam AA, Thompson R, Freitas V, Melo A, Carvalho EM. Interferon-gamma and interleukin-4 responses in relation to serum IgE levels in persons infected with human T lymphotropic virus type I and Strongyloides stercoralis. J Infect Dis. 1998;178:1856–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Porto AF, Neva FA, Bittencourt H, Lisboa W, Thompson R, Alcantara L, Carvalho EM. HTLV-1 decreases Th2 type of immune response in patients with strongyloidiasis. Parasite Immunol. 2001;23:503–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Lange AM, Yutanawiboonchai W, Scott P, Abraham D. IL-4- and IL-5-dependent protective immunity to Onchocerca volvulus infective larvae in BALB/cBYJ mice. J Immunol. 1994;153:205–11.PubMedGoogle Scholar
  53. 53.
    Urban JF Jr, Katona IM, Paul WE, Finkelman FD. Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc Natl Acad Sci USA. 1991;88:5513–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Else KJ, Grencis RK. Cellular immune responses to the murine nematode parasite Trichuris muris. I. Differential cytokine production during acute or chronic infection. Immunology. 1991;72:508–13.PubMedGoogle Scholar
  55. 55.
    Sasaki O, Sugaya H, Ishida K, Yoshimura K. Ablation of eosinophils with anti-IL-5 antibody enhances the survival of intracranial worms of Angiostrongylus cantonensis in the mouse. Parasite Immunol. 1993;15:349–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Rotman HL, Schnyder-Candrian S, Scott P, Nolan TJ, Schad GA, Abraham D. IL-12 eliminates the Th-2 dependent protective immune response of mice to larval Strongyloides stercoralis. Parasite Immunol. 1997;19:29–39.PubMedCrossRefGoogle Scholar
  57. 57.
    Fernandes A, Pereira AT, Eschenazi PD, Schilter HC, Sousa AL, Teixeira MM, Negrao-Correa D. Evaluation of the immune response against Strongyloides venezuelensis in antigen-immunized or previously infected mice. Parasite Immunol. 2008;30:139–49.PubMedCrossRefGoogle Scholar
  58. 58.
    Bleay C, Wilkes CP, Paterson S, Viney ME. Density-dependent immune responses against the gastrointestinal nematode Strongyloides ratti. Int J Parasitol. 2007;37:1501–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Chiuso-Minicucci F, Marra NM, Zorzella-Pezavento SF, Franca TG, Ishikawa LL, Amarante MR, Amarante AF, Sartori A. Recovery from Strongyloides venezuelensis infection in Lewis rats is associated with a strong Th2 response. Parasite Immunol. 2010;32:74–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Machado ER, Carlos D, Lourenco EV, Sorgi CA, Silva EV, Ramos SG, Ueta MT, Aronoff DM, Faccioli LH. Counterregulation of Th2 immunity by interleukin 12 reduces host defenses against Strongyloides venezuelensis infection. Microbes Infect. 2009;11:571–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Wilkes CP, Bleay C, Paterson S, Viney ME. The immune response during a Strongyloides ratti infection of rats. Parasite Immunol. 2007;29:339–46.PubMedCrossRefGoogle Scholar
  62. 62.
    Eschbach ML, Klemm U, Kolbaum J, Blankenhaus B, Brattig N, Breloer M. Strongyloides ratti infection induces transient nematode-specific Th2 response and reciprocal suppression of IFN-gamma production in mice. Parasite Immunol. 2010;32:370–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Paterson S, Wilkes C, Bleay C, Viney ME. Immunological responses elicited by different infection regimes with Strongyloides ratti. PLoS One. 2008;3:e2509.PubMedCrossRefGoogle Scholar
  64. 64.
    Genta RM, Gomes MC. Pathology. In: Grove DI, editor. Strongyloidiasis a major roundworm infection of man. Philadelphia, PA, USA: Taylor & Francis Inc.; 1989. p. 105–132.Google Scholar
  65. 65.
    Haque AK, Schnadig V, Rubin SA, Smith JH. Pathogenesis of human strongyloidiasis: autopsy and quantitative parasitological analysis. Mod Pathol. 1994;7:276–88.PubMedGoogle Scholar
  66. 66.
    Wang HB, Weller PF. Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J Leukoc Biol. 2008;83:817–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Hayashi Y, Nakagaki K, Nogami S, Hammerberg B, Tanaka H. Protective immunity against Brugia malayi infective larvae in mice. I. Parameters of active and passive immunity. Am J Trop Med Hyg. 1989;41:650–6.PubMedGoogle Scholar
  68. 68.
    Kerepesi LA, Leon O, Lustigman S, Abraham D. Protective immunity to the larval stages of Onchocerca volvulus is dependent on Toll-like receptor 4. Infect Immun. 2005;73:8291–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Helmby H, Grencis RK. Essential role for TLR4 and MyD88 in the development of chronic intestinal nematode infection. Eur J Immunol. 2003;33:2974–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Stewart PW, Chapes SK. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata. Comp Med. 2003;53:70–4.PubMedGoogle Scholar
  71. 71.
    Fan J, Malik AB. Toll-like receptor-4 (TLR4) signaling augments chemokine-induced neutrophil migration by modulating cell surface expression of chemokine receptors. Nat Med. 2003;9:315–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Kirimanjeswara GS, Mann PB, Pilione M, Kennett MJ, Harvill ET. The complex mechanism of antibody-mediated clearance of Bordetella from the lungs requires TLR4. J Immunol. 2005;175:7504–11.PubMedGoogle Scholar
  73. 73.
    Kerepesi LA, Hess JA, Leon O, Nolan TJ, Schad GA, Abraham D. Toll-like receptor 4 (TLR4) is required for protective immunity to larval Strongyloides stercoralis in mice. Microbes Infect. 2007;9:28–34.PubMedCrossRefGoogle Scholar
  74. 74.
    Herbert DR, Nolan TJ, Schad GA, Abraham D. The role of B cells in immunity against larval Strongyloides stercoralis in mice. Parasite Immunol. 2002;24:95–101.PubMedCrossRefGoogle Scholar
  75. 75.
    Ligas JA, Kerepesi LA, Galioto AM, Lustigman S, Nolan TJ, Schad GA, Abraham D. Specificity and mechanism of immunoglobulin M (IgM)- and IgG-dependent protective immunity to larval Strongyloides stercoralis in mice. Infect Immun. 2003;71:6835–43.PubMedCrossRefGoogle Scholar
  76. 76.
    Nolan TJ, Rotman HL, Bhopale VM, Schad GA, Abraham D. Immunity to a challenge infection of Strongyloides stercoralis third-stage larvae in the jird. Parasite Immunol. 1995;17:599–604.PubMedCrossRefGoogle Scholar
  77. 77.
    Murrell KD. Protective role of immunoglobulin G in immunity to Strongyloides ratti. J Parasitol. 1981;67:167–73.PubMedCrossRefGoogle Scholar
  78. 78.
    Dawkins HJ, Grove DI. Transfer by serum and cells of resistance to infection with Strongyloides ratti in mice. Immunology. 1981;43:317–22.PubMedGoogle Scholar
  79. 79.
    Uchikawa R, Ichiki H, Komaki E. Antibody responses and protective immunity in rats receiving repeated inoculations of Strongyloides ratti. J Parasitol. 1991;77:737–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Kerepesi LA, Keiser PB, Nolan TJ, Schad GA, Abraham D, Nutman TB. DNA immunization with Na+–K+ ATPase (Sseat-6) induces protective immunity to larval Strongyloides stercoralis in mice. Infect Immun. 2005;73:2298–305.PubMedCrossRefGoogle Scholar
  81. 81.
    Abraham D, Hess JA, Mejia R, Nolan TJ, Lok JB, Lustigman S, Nutman TB. Immunization with the recombinant antigen Ss-IR induces protective immunity to infection with Strongyloides stercoralis in mice. Vaccine. 2011;29:8134–40.PubMedCrossRefGoogle Scholar
  82. 82.
    Kerepesi LA, Nolan TJ, Schad GA, Lustigman S, Herbert DR, Keiser PB, Nutman TB, Krolewiecki AJ, Abraham D. Human immunoglobulin G mediates protective immunity and identifies protective antigens against larval Strongyloides stercoralis in mice. J Infect Dis. 2004;189:1282–90.PubMedCrossRefGoogle Scholar
  83. 83.
    Brewer JM, Conacher M, Hunter CA, Mohrs M, Brombacher F, Alexander J. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J Immunol. 1999;163:6448–54.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sandra Bonne-Année
    • 1
  • Jessica A. Hess
    • 1
  • David Abraham
    • 1
  1. 1.Department of Microbiology and ImmunologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations