Immunologic Research

, Volume 50, Issue 2–3, pp 181–187 | Cite as

IL-17 signaling in host defense against Candida albicans

  • Sarah L. GaffenEmail author
  • Nydiaris Hernández-Santos
  • Alanna C. Peterson


The discovery of the Th17 lineage in 2005 triggered a major change in how immunity to infectious diseases is viewed. Fungal infections, in particular, have long been a relatively understudied area of investigation in terms of the host immune response. Candida albicans is a commensal yeast that colonizes mucosal sites and skin. In healthy individuals, it is non-pathogenic, but in conditions of immune deficiency, this organism can cause a variety of infections associated with considerable morbidity. Candida can also cause disseminated infections that have a high mortality rate and are a major clinical problem in hospital settings. Although immunity to Candida albicans was long considered to be mediated by Th1 cells, new data in both rodent models and in humans have revealed an essential role for the Th17 lineage, and in particular its signature cytokine IL-17.


IL-17 Th17 Candida albicans Fungal infections Cytokine 



Oropharygeal candidiasis


Chronic mucocutaneous candidiaisis


Hyper-IgE Syndrome


Autoimmune polyendocrine syndrome-1


Antimicrobial peptide


Pattern recognition receptor


Autosomal recessive


Loss of function



SLG was supported by the National Institutes of Health grants AI89768 and AR054389. NHS is supported by AR054389.


  1. 1.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. J Immunol. 1986;136:2348–57.PubMedGoogle Scholar
  2. 2.
    Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol. 2005;6:1133–41.CrossRefGoogle Scholar
  3. 3.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 2005;6:1123–32.CrossRefGoogle Scholar
  4. 4.
    Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 Family Cytokines and the Expanding Diversity of Effector T Cell Lineages. Annu Rev Immunol. 2007;25:821–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immuno. 2009;27:485–518.CrossRefGoogle Scholar
  6. 6.
    Dong C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol. 2006;6:329–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nature Med. 2007;13:139–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Gor DO, Rose NR, Greenspan NS. TH1-TH2: a procrustean paradigm. Nature Immunol. 2003;4:503–5.CrossRefGoogle Scholar
  9. 9.
    Gaffen SL, Kramer JM, Yu JJ, Shen F. The IL-17 cytokine family. In: Litwack G, editor. Vitamins and hormones. London: Academic Press; 2006. p. 255–82.Google Scholar
  10. 10.
    Hirahara K, Ghoreschi K, Laurence A, Yang XP, Kanno Y, O’Shea JJ. Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev. 2010;21:425–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009;2:403–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Goswami R, Kaplan MH. A brief history of IL-9. J Immunol. 2011;186:3283–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Shrikant PA, Rao R, Li Q, Kesterson J, Eppolito C, Mischo A, et al. Regulating functional cell fates in CD8 T cells. Immunol Res. 2010;46:12–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183:2593–603.PubMedCrossRefGoogle Scholar
  15. 15.
    Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu X, Lin X, Gaffen SL. Crucial role for nuclear factor of activated T cells (NFAT) in T cell receptor-mediated regulation of the human interleukin-17 gene. J Biol Chem. 2004;279:52762–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Dongari-Bagtoglou A, Fidel P. The host cytokine responses and protective immunity in oropharyngeal candidiasis. J Dent Res. 2005;84:966–77.CrossRefGoogle Scholar
  18. 18.
    Clancy C, Cheng S, Nguyen M. Animal models of Candidiasis. In: Cihlar R, Calderone R, editors. Candida albicans: methods and protocols. New York: Humana Press; 2009. p. 65–76.Google Scholar
  19. 19.
    Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis. 2004;190:624–31.PubMedCrossRefGoogle Scholar
  20. 20.
    van de Veerdonk FL, Kullberg BJ, Verschueren IC, Hendriks T, van der Meer JW, Joosten LA, et al. Differential effects of IL-17 pathway in disseminated candidiasis and zymosan-induced multiple organ failure. Shock. 2010;34:407–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Farah C, Hu Y, Riminton S, Ashman R. Distinct roles for interleukin-12p40 and tumour necrosis factor in resistance to oral candidiasis defined by gene targeting. Oral Microbiol Immunol. 2006;21:252–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler S. New model of oropharyngeal candidiasis in mice. Anti-microb Agents Chemo. 2001;45:3195–7.CrossRefGoogle Scholar
  24. 24.
    Conti HR, Gaffen SL. Host responses to Candida albicans: Th17 cells and mucosal candidiasis. Microbes Infect. 2010;12:518–27.PubMedCrossRefGoogle Scholar
  25. 25.
    Conti H, Shen F, Nayyar N, Stocum E, JN S, Lindemann M, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 2009;206:299–311.PubMedCrossRefGoogle Scholar
  26. 26.
    Ho A, Shen F, Conti H, Patel N, Childs E, Peterson A, et al. IL-17RC is required for immune signaling via an extended SEFIR domain in the cytoplasmic tail. J Immunol. 2010;185:1063–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Pandiyan P, Conti H, Zheng L, Peterson A, Mathern D, Hernandez-Santos N, et al. CD4 + CD25 + Foxp3 + regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 infection model. Immunity. 2011;34:422–34.PubMedCrossRefGoogle Scholar
  28. 28.
    Eyerich K, Foerster S, Rombold S, Seidl HP, Behrendt H, Hofmann H, et al. Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol. 2008;128:2640–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Aujla SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Semin Immunol. 2007;19:377–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol. 2010;185:5453–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Spellberg BJ, Ibrahim AS, Avanesian V, Fu Y, Myers C, Phan QT, et al. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis. 2006;194:256–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Wuthrich M, Gern B, Hung CY, Ersland K, Rocco N, Pick-Jacobs J, et al. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J Clin Invest. 2011;121:554–68.PubMedCrossRefGoogle Scholar
  33. 33.
    Cheng SC, van de Veerdonk F, Smeekens S, Joosten LA, van der Meer JW, Kullberg BJ, et al. Candida albicans dampens host defense by downregulating IL-17 production. J Immunol. 2010;185:2450–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37:2695–706.PubMedCrossRefGoogle Scholar
  35. 35.
    Zelante T, Iannitti R, De Luca A, Romani L. IL-22 in antifungal immunity. Eur J Immunol. 2011;41:270–5.PubMedCrossRefGoogle Scholar
  36. 36.
    De Luca A, Zelante T, D’Angelo C, Zagarella S, Fallarino F, Spreca A, et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 2010;3:361–73.PubMedCrossRefGoogle Scholar
  37. 37.
    de Repentigny L. Animal models in the analysis of Candida host-pathogen interactions. Cur Op Microbiol. 2004;7:324–9.CrossRefGoogle Scholar
  38. 38.
    Fidel PL Jr, Cutler JE. Prospects for development of a vaccine to prevent and control vaginal candidiasis. Curr Infect Dis Rep. 2011;13:102–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Yu J, Gaffen SL. Interleukin-17: a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci. 2008;13:170–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Saunus JM, Kazoullis A, Farah CS. Cellular and molecular mechanisms of resistance to oral Candida albicans infections. Front Biosci. 2008;13:5345–58.PubMedCrossRefGoogle Scholar
  43. 43.
    Conti H, Baker O, Freeman A, Jang W, Li R, Holland S, et al.: New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol. 2011 (in press).Google Scholar
  44. 44.
    Weindl G, Naglik JR, Kaesler S, Biedermann T, Hube B, Korting HC, et al. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest. 2007;117:3664–72.PubMedGoogle Scholar
  45. 45.
    van de Veerdonk FL, Marijnissen RJ, Kullberg BJ, Koenen HJ, Cheng SC, Joosten I, et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe. 2009;5:329–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Gow NA, Netea MG, Munro CA, Ferwerda G, Bates S, Mora-Montes HM, et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis. 2007;196:1565–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6:67–78.PubMedCrossRefGoogle Scholar
  48. 48.
    Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nature Immunol. 2007;8:31–8.CrossRefGoogle Scholar
  49. 49.
    Leibundgut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunol. 2007;8:630–8.CrossRefGoogle Scholar
  50. 50.
    Cambi A, Netea MG, Mora-Montes HM, Gow NA, Hato SV, Lowman DW, et al. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J Biol Chem. 2008;283:20590–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Gross O, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med. 2009;206:2037–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Saijo S, Fujikado N, Furuta T, Chung SH, Kotaki H, Seki K, et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nature Immunol. 2007;8:39–46.CrossRefGoogle Scholar
  53. 53.
    Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010;32:681–91.PubMedCrossRefGoogle Scholar
  54. 54.
    Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, et al. The Macrophage-Inducible C-Type Lectin, Mincle, Is an Essential Component of the Innate Immune Response to Candida albicans. J Immunol. 2008;180:7404–13.PubMedGoogle Scholar
  55. 55.
    Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5:487–97.PubMedCrossRefGoogle Scholar
  56. 56.
    Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459:433–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Freeman AF, Holland SM. The hyper-IgE syndromes. Immunology and allergy clinics of North America. 2008;28:277–91. viii.PubMedCrossRefGoogle Scholar
  58. 58.
    Freeman AF, Kleiner DE, Nadiminti H, Davis J, Quezado M, Anderson V, et al. Causes of death in hyper-IgE syndrome. J Allergy Clin Immunol. 2007;119:1234–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Desai K, Huston D, Harriman G. Previously undiagnosed hyper-IgE syndrome in an adult with multiple systemic fungal infections. J Allergy Clin Immunol. 1996;98:1123–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.PubMedCrossRefGoogle Scholar
  61. 61.
    Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M, Grimbacher B, et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med. 2008;205:1551–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Renner ED, Rylaarsdam S, Anover-Sombke S, Rack AL, Reichenbach J, Carey JC, et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol. 2008;122:181–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25:745–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Woellner C, Schaffer AA, Puck JM, Renner ED, Knebel C, Holland SM, et al. The hyper IgE syndrome and mutations in TYK2. Immunity. 2007;26:535.PubMedCrossRefGoogle Scholar
  66. 66.
    Puel A, Picard C, Cypowyj S, Lilic D, Abel L, Casanova JL. Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines? Curr Opin Immunol. 2010;22:467–74.PubMedCrossRefGoogle Scholar
  67. 67.
    Puel A, Cypowji S, Bustamante J, Wright J, Liu L, Lim H, et al.: Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011 (in press).Google Scholar
  68. 68.
    Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207:291–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308.PubMedCrossRefGoogle Scholar
  70. 70.
    Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009;361:1760–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–35.PubMedCrossRefGoogle Scholar
  72. 72.
    Plantinga TS, van der Velden WJ, Ferwerda B, van Spriel AB, Adema G, Feuth T, et al. Early stop polymorphism in human DECTIN-1 is associated with increased candida colonization in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2009;49:724–32.PubMedCrossRefGoogle Scholar
  73. 73.
    Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, Baquir B, et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 2009;5:e1000703.PubMedCrossRefGoogle Scholar
  74. 74.
    Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2:52ra72.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sarah L. Gaffen
    • 1
    Email author
  • Nydiaris Hernández-Santos
    • 1
  • Alanna C. Peterson
    • 1
  1. 1.Division of Rheumatology and Clinical Immunology, Department of MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations