Advertisement

Immunologic Research

, Volume 50, Issue 2–3, pp 124–129 | Cite as

Dendritic cells and the maintenance of self-tolerance

  • Penelope A. MorelEmail author
  • Michael S. Turner
UNIVERSITY OF PITTSBURGH IMMUNOLOGY 2011

Abstract

Dendritic cells (DC) play important roles in the initiation of immune responses and in the maintenance of self-tolerance. We have been studying the role of DC in the pathogenesis of type 1 diabetes and exploring the ability of specific DC subsets to prevent diabetes in non-obese diabetic (NOD) mice. DC presenting low doses of antigen are capable of inducing and expanding T-regulatory (Treg) cells that have potent suppressive function. We review here our recent findings in this area and highlight the ability of semi-mature therapeutic DC to induce Treg expansion in the absence of exogenous antigen. We discuss how the presentation of endogenous self-antigen by DC may represent a natural mechanism for peripheral self-tolerance that can be harnessed to prevent autoimmunity.

Keywords

Dendritic cells Regulatory T cells Type 1 diabetes 

Notes

Acknowledgments

The authors would like to thank Huijie Sun for expert technical assistance. This work was supported by National Institutes of Health grant CA73743 (PAM) and National Institutes of Health training grant 5T32 CA82084 (MST).

References

  1. 1.
    Proietto AI, van Dommelen S, Zhou P, Rizzitelli A, D’Amico A, Steptoe RJ, Naik SH, Lahoud MH, Liu Y, Zheng P, Shortman K, Wu L. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc Natl Acad Sci USA. 2008;105:19869–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, Shevach EM. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. The Journal of Immunology. 2010;184:3433–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Ziegler SF. FOXP3: of mice and men. Annu Rev Immunol. 2006;24:209–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA, Wysocka M, Trinchieri G, Murphy KM, O’Garra A. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol. 1995;154:5071–9.PubMedGoogle Scholar
  5. 5.
    Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.PubMedCrossRefGoogle Scholar
  6. 6.
    Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 2004;172:5149–53.PubMedGoogle Scholar
  7. 7.
    Yamazaki S, Bonito AJ, Spisek R, Dhodapkar M, Inaba K, Steinman RM. Dendritic cells are specialized accessory cells along with TGF- for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3 precursors. Blood. 2007;110:4293–302.PubMedCrossRefGoogle Scholar
  8. 8.
    Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep. 2011;11:29–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007;317:256–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10:482–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Morel PA, Turner MS. Designing the optimal vaccine: the importance of cytokines and dendritic cells. The Open Vaccine Journal. 2010;3:7–17.CrossRefGoogle Scholar
  12. 12.
    Wicker LS, Clark J, Fraser HI, Garner VES, Gonzalez-Munoz A, Healy B, Howlett S, Hunter K, Rainbow D, Rosa RL, Smink LJ, Todd JA, Peterson LB. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun. 2005;25:29–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Feili-Hariri M, Dong X, Alber SM, Watkins SC, Salter RD, Morel PA. Immunotherapy of NOD mice with bone marrow-derived dendritic cells. Diabetes. 1999;48:2300–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Feili-Hariri M, Falkner DH, Morel PA. Regulatory Th2 response induced following adoptive transfer of dendritic cells in prediabetic NOD mice. Eur J Immunol. 2002;32:2021–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Feili-Hariri M, Falkner DH, Gambotto A, Papworth GD, Watkins SC, Robbins PD, Morel PA. Dendritic cells transduced to express IL-4 prevent diabetes in nonobese diabetic mice with established insulitis. Human Gene Ther. 2003;14:13–23.CrossRefGoogle Scholar
  17. 17.
    Feili-Hariri M, Falkner DH, Morel PA. Polarization of naive T cells into Th1 or Th2 by distinct cytokine-driven murine dendritic cell populations: implications for immunotherapy. J Leukoc Biol. 2005;78:656–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Zanoni I, Granucci F. The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity. 2011;44:23–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Darrasse-Jeze G, Deroubaix S, Mouquet H, Victora GD, Eisenreich T, Yao KH, Masilamani RF, Dustin ML, Rudensky A, Liu K, Nussenzweig MC. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med. 2009;206:1853–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196:1627–38.PubMedCrossRefGoogle Scholar
  21. 21.
    Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC. Dendritic cells induce peripheral T Cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194:769–80.PubMedCrossRefGoogle Scholar
  22. 22.
    von Boehmer H. Peptide-based instruction of suppressor commitment in naive T cells and dynamics of immunosuppression in vivo. Scand J Immunol. 2005;62(Suppl 1):49–54.CrossRefGoogle Scholar
  23. 23.
    Turner MS, Kane LP, Morel PA. Dominant role of antigen dose in CD4+ Foxp3+ regulatory T cell induction and expansion. J Immunol. 2009;183:4895–903.PubMedCrossRefGoogle Scholar
  24. 24.
    Katz JD, Wang B, Haskins K, Benoist C, Mathis D. Following a diabetogenic T cell from genesis through pathogenesis. Cell. 1993;74:1089–100.PubMedCrossRefGoogle Scholar
  25. 25.
    Judkowski V, Pinilla C, Schroder K, Tucker L, Sarvetnick N, Wilson DB. Identification of MHC class II-restricted peptide ligands, including a glutamic acid decarboxylase 65 sequence, that stimulate diabetogenic T cells from transgenic BDC2.5 nonobese diabetic mice. J Immunol. 2001;166:908–17.PubMedGoogle Scholar
  26. 26.
    Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol. 2005;6:1219–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med. 2008;205:565–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008;105:7797–802.PubMedCrossRefGoogle Scholar
  29. 29.
    Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, Magnuson MA, Boothby M. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity. 2010;32:743–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Battaglia M, Stabilini A, Roncarolo M-G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Basu S, Golovina T, Mikheeva T, June CH, Riley JL. Cutting edge: Foxp3-mediated induction of Pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol. 2008;180:5794–8.PubMedGoogle Scholar
  33. 33.
    Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J Immunol. 2007;178:320–9.PubMedGoogle Scholar
  34. 34.
    Morel PA, Srinivas M, Turner MS, Fuschiotti P, Munshi R, Bahar I, Feili-Hariri M, Ahrens ET. Gene expression analysis of dendritic cells that prevent diabetes in NOD mice: analysis of chemokines and costimulatory molecules. J Leuk Biol 2011;Under Revsion.Google Scholar
  35. 35.
    Hoshino A, Tanaka Y, Akiba H, Asakura Y, Mita Y, Sakurai T, Takaoka A, Nakaike S, Ishii N, Sugamura K, Yagita H, Okumura K. Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma. Eur J Immunol. 2003;33:861–9.PubMedCrossRefGoogle Scholar
  36. 36.
    So T, Croft M. Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. J Immunol. 2007;179:1427–30.PubMedGoogle Scholar
  37. 37.
    Ahrens ET, Flores R, Xu H, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol. 2005;23:983–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med. 2007;58:725–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Haase C, Ejrnaes M, Juedes AE, Wolfe T, Markholst H, von Herrath MG. Immunomodulatory dendritic cells require autologous serum to circumvent nonspecific immunosuppressive activity in vivo. Blood. 2005;106:4225–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Carrasco-Marin E, Shimizu J, Kanagawa O, Unanue E. The class II MHC I-Ag7 molecules from non-obese diabetic mice are poor peptide binders. J Immunol. 1996;156:450–8.PubMedGoogle Scholar
  41. 41.
    Kishimoto H, Sprent J. A defect in central tolerance in NOD mice. Nat Immunol. 2001;2:1025–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Ryan SO, Turner MS, Gariépy J, Finn OJ. Tumor antigen epitopes interpreted by the immune system as self or abnormal-self differentially affect cancer vaccine responses. Cancer Res. 2010;70:5788–96.PubMedCrossRefGoogle Scholar
  43. 43.
    Schmid D, Pypaert M, Munz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity. 2007;26:79–92.PubMedCrossRefGoogle Scholar
  44. 44.
    Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. 2008;455:396–400.PubMedCrossRefGoogle Scholar
  45. 45.
    Virgin HW, Levine B. Autophagy genes in immunity. Nat Immunol. 2009;10:461–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL Jr, Eissa NT. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med. 2009;15:267–76.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departments of Immunology and MedicineUniversity of PittsburghPittsburghUSA
  2. 2.Benaroya Research Institute at Virginia MasonSeattleUSA

Personalised recommendations