Immunologic Research

, Volume 50, Issue 1, pp 10–21 | Cite as

Biology and function of neuroimmune semaphorins 4A and 4D

  • EusebiusHenry Nkyimbeng-Takwi
  • Svetlana P. Chapoval
Article

Abstract

Semaphorins belong to a family of membrane-bound and secreted molecules that regulate the functional activity of axons in the nervous system. Sema4A and Sema4D were the first semaphorins also found to be expressed in immune cells and were, therefore, termed “immune semaphorins”. It is known that Sema4A has three functional receptors, namely Plexin D1, Plexin B1, and Tim-2, whereas Sema4D binds to Plexin B1 and CD72. Recent studies suggest that immune semaphorins play critical roles in many physiological and pathological processes and such. In this review, we summarize the current knowledge on the biology of neuroimmune semaphorins and their corresponding receptors, their distribution in organs and tissues, function in the immune response, and critical regulatory roles in various diseases.

Keywords

Sema4A Sema4D Tim-2 CD72 Plexin B1 Plexin D1 Expression Lung Immune response Diseases 

Notes

Acknowledgments

This work was supported by NIH grant R21AI076736 to S.P.C.

References

  1. 1.
    Kumanogoh A, Kikutani H. Immune semaphorins: a new area of semaphorin research. J Cell Sci. 2003;116:3463–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Yazdani U, Terman JR. The semaphorins. Genome Biol. 2006;7:211.PubMedCrossRefGoogle Scholar
  3. 3.
    Suzuki K, Kumanogoh A, Kikutani H. Semaphorins and their receptors in immune cell interactions. Nat Immunol. 2008;9:17–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Koppel AM, Feiner L, Kobayashi H, Raper JA. A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron. 1997;19:531–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Gherardi E, Love CA, Esnouf RM, Jones EY. The sema domain. Curr Opin Struct Biol. 2004;14:669–78.PubMedCrossRefGoogle Scholar
  6. 6.
    Bismuth G, Boumsell L. Controlling the immune system through semaphorins. Sci STKE. 2002;128:re4.Google Scholar
  7. 7.
    Kumanogoh A, Marukawa S, Suzuki K, Takegahara N, Watanabe C, Ch’ng E, Ishida I, Fujimura H, Sakoda S, Yoshida K, Kikutani H. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature. 2002;419:629–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Puschel AW, Adams RH, Betz H. Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron. 1995;14:941–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Toyofuku T, Yabuki M, Kamei J, Kamei M, Makino N, Kumanogoh A, Hori M. Semaphorin-4A, an activator for T-cell-mediated immunity, suppresses angiogenesis via Plexin-D1. EMBO J. 2007;26:1373–84.PubMedCrossRefGoogle Scholar
  10. 10.
    Bougeret C, Mansur IG, Dastot H, Schmid M, Mahouy G, Bensussan A, Boumsell L. Increased surface expression of a newly identified 150-kDa dimer early after human T lymphocyte activation. J Immunol. 1992;148:318–23.PubMedGoogle Scholar
  11. 11.
    Love CA, Harlos K, Mavaddat N, Davis SJ, Stuart DI, Jones EY, Esnouf RM. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat Struct Biol. 2003;10:843–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Esnouf RM, Love CA, Harlos K, Stuart DI, Jones EY. Structure determination of human semaphorin 4D as an example of the use of MAD in non-optimal cases. Acta Crystallogr D Biol Crystallogr. 2006;62:108–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Furuyama T, Inagaki S, Kosugi A, Noda S, Saitoh S, Ogata M, Iwahashi Y, Miyazaki N, Hamaoka T, Tohyama M. Identification of a novel transmembrane semaphorin expressed on lymphocytes. J Biol Chem. 1996;271:33376–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Delaire S, Elhabazi A, Bensussan A, Boumsell L. CD100 is a leukocyte semaphorin. Cell Mol Life Sci. 1998;54:1265–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Kumanogoh A, Suzuki K, Ch’ng E, Watanabe C, Marukawa S, Takegahara N, Ishida I, Sato T, Habu S, Yoshida K, Shi W, Kikutani H. Requirement for the lymphocyte semaphorin, CD100, in the induction of antigen-specific T cells and the maturation of dendritic cells. J Immunol. 2002;169:1175–81.PubMedGoogle Scholar
  16. 16.
    Chabbert-de Ponnat I, Marie-Cardine A, Pasterkamp RJ, Schiavon V, Tamagnone L, Thomasset N, Bensussan A, Boumsell L. Soluble CD100 functions on human monocytes and immature dendritic cells require plexin C1 and plexin B1, respectively. Int Immunol. 2005;17:439–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Hall KT, Boumsell L, Schultze JL, Boussiotis VA, Dorfman DM, Cardoso AA, Bensussan A, Nadler LM, Freeman GJ. Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. Proc Natl Acad Sci USA. 1996;93:11780–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Elhabazi A, Lang V, Hérold C, Freeman GJ, Bensussan A, Boumsell L, Bismuth G. The human semaphorin-like leukocyte cell surface molecule CD100 associates with a serine kinase activity. J Biol Chem. 1997;272:23515–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Sierra JR, Corso S, Caione L, Cepero V, Conrotto P, Cignetti A, Piacibello W, Kumanogoh A, Kikutani H, Comoglio PM, Tamagnone L, Giordano S. Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. J Exp Med. 2008;205:1673–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Li M, O’Sullivan KM, Jones LK, Lo C, Semple T, Kumanogoh A, Kikutani H, Holdsworth SR, Kitching R. Endogenous CD100 promotes glomerular injury and macrophage recruitment in experimental crescentic glomerulonephritis. Immunology. 2009;128:114–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Okuno T, Nakatsuji Y, Moriya M, Takamatsu H, Nojima S, Takegahara N, Toyofuku T, Nakagawa Y, Kang S, Friedel RH, Sakoda S, Kikutani H, Kumanogoh A. Roles of Sema4D-plexin-B1 interactions in the central nervous system for pathogenesis of experimental autoimmune encephalomyelitis. J Immunol. 2010;184:1499–506.PubMedCrossRefGoogle Scholar
  22. 22.
    Delaire S, Billard C, Tordjman R, Chédotal A, Elhabazi A, Bensussan A, Boumsell L. Biological activity of soluble CD100. II. Soluble CD100, similarly to H-SemaIII, inhibits immune cell migration. J Immunol. 2001;166:4348–54.PubMedGoogle Scholar
  23. 23.
    Basile JR, Holmbeck K, Bugge TH, Gutkind JS. MT1-MMP controls tumor-induced angiogenesis through the release of semaphorin 4D. J Biol Chem. 2007;282:6899–905.PubMedCrossRefGoogle Scholar
  24. 24.
    Elhabazi A, Delaire S, Bensussan A, Boumsell L, Bismuth G. Biological activity of soluble CD100. I. The extracellular region of CD100 is released from the surface of T lymphocytes by regulated proteolysis. J Immunol. 2001;166:4341–7.PubMedGoogle Scholar
  25. 25.
    Herold C, Elhabazi A, Bismuth G, Bensussan A, Boumsell L. CD100 is associated with CD45 at the surface of human T lymphocytes. Role in T cell homotypic adhesion. J Immunol. 1996;157:5262–8.PubMedGoogle Scholar
  26. 26.
    Takahashi T, Strittmatter SM. PlexinA1 autoinhibition by the plexin Sema domain. Neuron. 2001;29:429–39.PubMedCrossRefGoogle Scholar
  27. 27.
    Chakravarti S, Sabatos CA, Xiao S, Illes Z, Cha EK, Sobel RA, Zheng XX, Strom TB, Kuchroo VK. Tim-2 regulates T helper type 2 responses and autoimmunity. J Exp Med. 2005;202:437–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Knickelbein JE, de Souza AJ, Tosti R, Narayan P, Kane LP. Cutting edge: inhibition of T cell activation by TIM-2. J Immunol. 2006;177:4966–70.PubMedGoogle Scholar
  29. 29.
    van der Zwaag B, Hellemons AJ, Leenders WP, Burbach JP, Brunner HG, Padberg GW, Van Bokhoven H. PLEXIN-D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis. Dev Dyn. 2002;225:336–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Yukawa K, Tanaka T, Yoshida K, Takeuchi N, Ito T, Takamatsu H, Kikutani H, Kumanogoh A. Sema4A induces cell morphological changes through B-type plexin-mediated signaling. Int J Mol Med. 2010;25:225–30.PubMedGoogle Scholar
  31. 31.
    Roodink I, Verrijp K, Raats J, Leenders WP. Plexin D1 is ubiquitously expressed on tumor vessels and tumor cells in solid malignancies. BMC Cancer. 2009;9:297.PubMedCrossRefGoogle Scholar
  32. 32.
    Tong Y, Hota PK, Penachioni JY, Hamaneh MB, Kim S, Alviani RS, Shen L, He H, Tempel W, Tamagnone L, Park HW, Buck M. Structure and function of the intracellular region of the plexin-b1 transmembrane receptor. J Biol Chem. 2009;284:35962–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Kane LP. TIM family proteins and autoimmunity. Autoimmunity. 2007;40:405–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Santiago C, Ballesteros A, Tami C, Martínez-Muñoz L, Kaplan GG, Casasnovas JM. Structures of T cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Immunity. 2007;26:299–310.PubMedCrossRefGoogle Scholar
  35. 35.
    Kuchroo VK, Dardalhon V, Xiao S, Anderson AC. New roles for TIM family members in immune regulation. Nat Rev Immunol. 2008;8:577–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen TT, Li L, Chung DH, Allen CD, Torti SV, Torti FM, Cyster JG, Chen CY, Brodsky FM, Niemi EC, Nakamura MC, Seaman WE, Daws MR. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med. 2005;202:955–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Maestrini E, Tamagnone L, Longati P, Cremona O, Gulisano M, Bione S, Tamanini F, Neel BG, Toniolo D, Comoglio PM. A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor. Proc Natl Acad Sci USA. 1996;93:674–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Moreau-Fauvarque C, Kumanogoh A, Camand E, Jaillard C, Barbin G, Boquet I, Love C, Jones EY, Kikutani H, Lubetzki C, Dusart I, Chédotal A. The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J Neurosci. 2003;23:9229–39.PubMedGoogle Scholar
  39. 39.
    Gómez-Román JJ, Nicolas Martínez M, Lazuén Fernández S, Val-Bernal JF. PLXNB1 (plexin B1). Atlas Genet Cytogenet Oncol Haematol. 2010;3:416–22.Google Scholar
  40. 40.
    Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML, Goodman CS, Poo M, Tessier-Lavigne M, Comoglio PM. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell. 1999;99:71–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Artigiani S, Barberis D, Fazzari P, Longati P, Angelini P, van de Loo J-W, Comoglio PM, Tamagnone L. Functional regulation of semaphorin receptors by proprotein convertases. J Biol Chem. 2003;278:10094–101.PubMedCrossRefGoogle Scholar
  42. 42.
    Fazzari P, Penachioni J, Gianola S, Rossi F, Eickholt BJ, Maina F, Alexopoulou L, Sottile A, Comoglio PM, Flavell RA, Tamagnone L. Plexin-B1 plays a redundant role during mouse development and in tumor angiogenesis. BMC Dev Biol. 2007;7:55.PubMedCrossRefGoogle Scholar
  43. 43.
    Basile JR, Barac A, Zhu T, Guan KL, Gutkind JS. Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res. 2004;64:5212–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Granziero L, Circosta P, Scielzo C, Frisaldi E, Stella S, Geuna M, Giordano S, Ghia P, Caligaris-Cappio F. CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5 + B lymphocytes. Blood. 2003;101:1962–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Parnes JR, Pan C. CD72, a negative regulator of B-cell responsiveness. Immunol Rev. 2000;176:75–85.PubMedCrossRefGoogle Scholar
  46. 46.
    Adachi T, Wakabayashi C, Nakayama T, Yakura H, Tsubata T. CD72 negatively regulates signaling through the antigen receptor of B cells. J Immunol. 2000;164:1223–9.PubMedGoogle Scholar
  47. 47.
    Kumanogoh A, Watanabe C, Lee I, Wang X, Shi W, Araki H, Hirata H, Iwahori K, Uchida J, Yasui T, Matsumoto M, Yoshida K, Yakura H, Pan C, Parnes JR, Kikutani H. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity. 2000;13:621–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Robinson WH, Landolfi MM, Schafer H, Parnes JR. Biochemical identity of the mouse Ly-19.2 and Ly-32.2 alloantigens with the B cell differentiated antigen Lyb-2/CD72. J Immunol. 1993;151:4764–72.PubMedGoogle Scholar
  49. 49.
    Ishida I, Kumanogoh A, Suzuki K, Akahani S, Noda K, Kikutani H. Involvement of CD100, a lymphocyte semaphorin, in the activation of the human immune system via CD72: implications for the regulation of immune and inflammatory responses. Int Immunol. 2003;15:1027–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Wu HJ, Venkataraman C, Estus S, Dong C, Davis RJ, Flavell RA, Bondada S. Positive signaling through CD72 induces mitogen-activated protein kinase activation and synergizes with B cell receptor signals to induce X-linked immunodeficiency B cell proliferation. J Immunol. 2001;167:1263–73.PubMedGoogle Scholar
  51. 51.
    Ogimoto M, Ichinowatari G, Watanabe N, Tada N, Mizuno K, Yakura H. Impairment of B cell receptor-mediated Ca2+ influx, activation of mitogen-activated protein kinases and growth inhibition in CD72-deficient BAL-17 cells. Int Immunol. 2004;16:971–82.PubMedCrossRefGoogle Scholar
  52. 52.
    Fusaki N, Tomita S, Wu Y, Okamoto N, Goisuka R, Kitamura D, Hozumi N. BLNK is associated with the CD72/SHP-1/Grb2 complex in the WEHI231 cell line after membrane IgM cross-linking. Eur J Immunol. 2000;30:1326–30.PubMedCrossRefGoogle Scholar
  53. 53.
    Shi W, Kumanogoh A, Watanabe C, et al. The class IV semaphorin CD100 plays nonredundant roles in the immune system: defective B and T cell activation in CD100-deficient mice. Immunity. 2000;13:633–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Herold C, Bismuth G, Bensussan A, Boumsell L. Activation signals are delivered through two distinct epitopes of CD100, a unique 150 kDa human lymphocyte surface structure previously defined by BB18 mAb. Int Immunol. 1995;7:1–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Yu HH, Araj HH, Ralls SA, Kolodkin AL. The transmembrane Semaphorin Sema I is required in Drosophila for embryonic motor and CNS axon guidance. Neuron. 1998;20:207–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Conrotto P, Valdembri D, Corso S, Serini G, Tamagnone L, Comoglio PM, Bussolino F, Giordano S. Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood. 2005;105:4321–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Gu C, Yoshida Y, Livet J, et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science. 2005;307:265–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Kitsukawa T, Shimono A, Kawakami A, Kondoh H, Fujisawa H. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development. 1995;121:4309–18.PubMedGoogle Scholar
  59. 59.
    Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature. 1996;383:525–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Kumanogoh A, Kikutani H. The CD100-CD72 interaction: a novel mechanism of immune regulation. Trends Immunol. 2001;22:670–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Sekido Y, Bader S, Latif F, Chen JY, Duh FM, Wei MH, Albanesi JP, Lee CC, Lerman MI, Minna JD. Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc Natl Acad Sci USA. 1996;93:4120–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Chapoval SP, Smith E, Beasley K, DeTolla LJ, Keegan AD. Semaphorin 4A downregulates allergic airway inflammation. Int Immunol. 2010;22(Suppl. 1):v17.Google Scholar
  63. 63.
    Kikutani H. Semaphorins in immune cell communication. Int Immunol. 2010;22(Suppl. 1):v4.Google Scholar
  64. 64.
    Chapoval SP, David CS. Identification of antigenic epitopes on human allergens: studies with HLA transgenic mice. Environ Health Perspect. 2003;111:245–50.PubMedCrossRefGoogle Scholar
  65. 65.
    Horny HP, Sotlar K, Valent P. Mastocytosis: state of the art. Pathobiology. 2007;74:121–32.PubMedCrossRefGoogle Scholar
  66. 66.
    Li L, Yao Z. Mast cell and immune inhibitory receptors. Cell Mol Immunol. 2004;1:408–15.PubMedGoogle Scholar
  67. 67.
    Unkeless JC, Jin J. Inhibitory receptors, ITIM sequences and phosphatases. Curr Opin Immunol. 1997;9:338–43.PubMedCrossRefGoogle Scholar
  68. 68.
    Kataoka TR, Kumanogoh A, Bandara G, Metcalfe DD, Gilfillan AM. CD72 negatively regulates KIT-mediated responses in human mast cells. J Immunol. 2010;184:2468–75.PubMedCrossRefGoogle Scholar
  69. 69.
    Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D, Tamagnone L, Comoglio PM. Semaphorin 4D receptor controls invasive growth by coupling with Met tyrosine kinase. Nat Cell Biol. 2002;4:720–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Basile JR, Castilho RM, Williams VP, Gutkind JS. Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. Proc Natl Acad Sci USA. 2006;103:9017–22.PubMedCrossRefGoogle Scholar
  71. 71.
    Dorfman DM, Shahsafaei A, Nadler LM, Freeman GJ. The leukocyte semaphorin CD100 is expressed in most T-cell, but few B-cell, non-Hodgkin’s lymphomas. Am J Pathol. 1998;153:255–62.PubMedCrossRefGoogle Scholar
  72. 72.
    Blauwet LA, Cooper LT. Myocarditis. Prog Cardiovasc Dis. 2010;52:274–88.PubMedCrossRefGoogle Scholar
  73. 73.
    Makino N, Toyofuku T, Takegahara N, Takamatsu H, Okuno T, Nakagawa Y, Kang S, Nojima S, Hori M, Kikutani H, Kumanogoh A. Involvement of Sema4A in the progression of experimental autoimmune myocarditis. FEBS Lett. 2008;582:3935–40.PubMedCrossRefGoogle Scholar
  74. 74.
    Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V. Neovascularization in human atherosclerosis. Circulation. 2006;113:2245–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Yukawa K, Tanaka T, Kishino M, Yoshida K, Takeuchi N, Ito T, Takamatsu H, Kikutani H, Kumanogoh A. Deletion of Sema4D gene reduces intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Int J Mol Med. 2010;26:39–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med. 2001;7:425–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhu L, Bergmeier W, Wu J, Jiang H, Stalker TJ, Cieslak M, Fan R, Boumsell L, Kumanogoh A, Kikutani H, Tamagnone L, Wagner DD, Milla ME, Brass LF. Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc Natl Acad Sci USA. 2007;104:1621–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhu L, Stalker TJ, Fong KP, Jiang H, Tran A, Crichton I, Lee EK, Neeves KB, Maloney SF, Kikutani H, Kumanogoh A, Pure E, Diamond SL, Brass LF. Disruption of SEMA4D ameliorates platelet hypersensitivity in dyslipidemia and confers protection against the development of atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:1039–45.PubMedCrossRefGoogle Scholar
  79. 79.
    Li M, O’Sullivan KM, Jones LK, Semple T, Kumanogoh A, Kikutani H, Holdsworth SR, Kitching AR. CD100 enhances dendritic cell and CD4 + cell activation leading to pathogenetic humoral responses and immune complex glomerulonephritis. J Immunol. 2006;177:3406–12.PubMedGoogle Scholar
  80. 80.
    Reinhardt RL, Bullard DC, Weaver CT, Jenkins MK. Preferential accumulation of antigen-specific effector CD4 T cells at an antigen injection site involves CD62E-dependent migration but not local proliferation. J Exp Med. 2003;197:751–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Kumanogoh A, Shikina T, Suzuki K, Uematsu S, Yukawa K, Kashiwamura S, Tsutsui H, Yamamoto M, Takamatsu H, Ko-Mitamura EP, Takegahara N, Marukawa S, Ishida I, Morishita H, Prasad DV, Tamura M, Mizui M, Toyofuku T, Akira S, Takeda K, Okabe M, Kikutani H. Nonredundant roles of Sema4A in the immune system: defective T cell priming and Th1/Th2 regulation in Sema4A-deficient mice. Immunity. 2005;22:305–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Izmailova E, Bertley FM, Huang Q, Makori N, Miller CJ, Young RA, Aldovini A. HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat Med. 2003;9:191–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • EusebiusHenry Nkyimbeng-Takwi
    • 1
    • 2
  • Svetlana P. Chapoval
    • 1
    • 2
    • 3
  1. 1.Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.Program in Oncology, Marlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations