Advertisement

Immunologic Research

, Volume 49, Issue 1–3, pp 192–201 | Cite as

Orchestrating T-cell receptor α gene assembly through changes in chromatin structure and organization

  • Han-Yu Shih
  • Bingtao Hao
  • Michael S. KrangelEmail author
Article

Abstract

V(D)J recombination is regulated through changes in chromatin structure that allow recombinase proteins access to recombination signal sequences and through changes in three-dimensional chromatin organization that bring pairs of distant recombination signal sequences into proximity. The Tcra/Tcrd locus is complex and undergoes distinct recombination programs in double negative and double positive thymocytes that lead to the assembly of Tcrd and Tcra genes, respectively. Our studies provide insights into how locus chromatin structure is regulated and how changes in locus chromatin structure can target and then retarget the recombinase to create developmental progressions of recombination events. Our studies also reveal distinct locus conformations in double negative and double positive thymocytes and suggest how these conformations may support the distinct recombination programs in the two compartments.

Keywords

T-cell receptor Chromatin V(D)J recombination T lymphocyte 

Notes

Acknowledgments

Work in the authors’ laboratory was supported by NIH grant R37 GM41052.

References

  1. 1.
    Schatz DG, Spanopoulou E. Biochemistry of V(D)J recombination. Curr Top Microbiol Immunol. 2005;290:49–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Bassing CH, Swat W. Alt FW: the mechanism and regulation of chromosomal V(D)J recombination. Cell. 2002;109(Suppl):S45–55.PubMedCrossRefGoogle Scholar
  3. 3.
    Matthews AG, Oettinger MA. RAG: a recombinase diversified. Nat Immunol. 2009;10:817–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Krangel MS. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol. 2009;21:133–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Krangel MS. T cell development: better living through chromatin. Nat Immunol. 2007;8:687–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Krangel MS. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol. 2003;4:624–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Cobb RM, Oestreich KJ, Osipovich OA, Oltz EM. Accessibility control of V(D)J recombination. Adv Immunol. 2006;91:45–109.PubMedCrossRefGoogle Scholar
  8. 8.
    Krangel MS, Carabana J, Abbarategui I, Schlimgen R, Hawwari A. Enforcing order within a complex locus: current perspectives on the control of V(D)J recombination at the murine T-cell receptor alpha/delta locus. Immunol Rev. 2004;200:224–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Yancopoulos GD, Alt FW. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell. 1985;40:271–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Sleckman BP, Bardon CG, Ferrini R, Davidson L, Alt FW. Function of the TCR α enhancer in αβ and γδ T cells. Immunity. 1997;7:505–15.PubMedCrossRefGoogle Scholar
  11. 11.
    Monroe RJ, Sleckman BP, Monroe BC, Khor B, Claypool S, Ferrini R, Davidson L, Alt FW. Developmental regulation of TCR δ locus accessibility and expression by the TCR δ enhancer. Immunity. 1999;10:503–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferrier P, Krippl B, Blackwell TK, Furley AJ, Suh H, Winoto A, Cook WD, Hood L, Costantini F, Alt FW. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO J. 1990;9:117–25.PubMedGoogle Scholar
  13. 13.
    Lauzurica P, Krangel MS. Temporal and lineage-specific control of T cell receptor α/δ gene rearrangement by T cell receptor α and δ enhancers. J Exp Med. 1994;179:1913–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Lauzurica P, Krangel MS. Enhancer-dependent and -independent steps in the rearrangement of a human T cell receptor δ transgene. J Exp Med. 1994;179:43–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Villey I, Caillol D, Selz F, Ferrier P, de Villartay JP. Defect in rearrangement of the most 5′ TCR-J α following targeted deletion of T early α (TEA): implications for TCR α locus accessibility. Immunity. 1996;5:331–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Whitehurst CE, Chattopadhyay S, Chen J. Control of V(D)J recombinational accessibility of the Dβ1 gene segment at the TCR β locus by a germline promoter. Immunity. 1999;10:313–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Bories JC, Demengeot J, Davidson L, Alt FW. Gene-targeted deletion and replacement mutations of the T-cell receptor β-chain enhancer: the role of enhancer elements in controlling V(D)J recombination accessibility. Proc Natl Acad Sci USA. 1996;93:7871–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Osipovich O, Cobb RM, Oestreich KJ, Pierce S, Ferrier P, Oltz EM. Essential function for SWI-SNF chromatin-remodeling complexes in the promoter-directed assembly of Tcrb genes. Nat Immunol. 2007;8:809–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Kondilis-Mangum HD, Cobb RM, Osipovich O, Srivatsan S, Oltz EM, Krangel MS. Transcription-dependent mobilization of nucleosomes at accessible TCR gene segments in vivo. J Immunol. 2010;184:6970–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Mathieu N, Hempel WM, Spicuglia S, Verthuy C, Ferrier P. Chromatin remodeling by the T cell receptor (TCR)-β gene enhancer during early T cell development: implications for the control of TCR-β locus recombination. J Exp Med. 2000;192:625–36.PubMedCrossRefGoogle Scholar
  21. 21.
    McMurry MT, Krangel MS. A role for histone acetylation in the developmental regulation of VDJ recombination. Science. 2000;287:495–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Matthews AG, Kuo AJ, Ramón-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature. 2007;450:1106–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz DG. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell. 2010;141:419–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu Y, Subrahmanyam R, Chakraborty T, Sen R, Desiderio S. A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity. 2007;27:561–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Jhunjhunwala S, van Zelm MC, Peak MM, Murre C. Chromatin architecture and the generation of antigen receptor diversity. Cell. 2009;138:435–48.PubMedCrossRefGoogle Scholar
  26. 26.
    Kosak ST, Skok JA, Medina KL, Riblet R, Le Beau MM, Fisher AG, Singh H. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science. 2002;296:158–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Roldán E, Fuxa M, Chong W, Martinez D, Novatchkova M, Busslinger M, Skok JA. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol. 2005;6:31–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Skok JA, Gisler R, Novatchkova M, Farmer D, de Laat W, Busslinger M. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat Immunol. 2007;8:378–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Jhunjhunwala S, van Zelm MC, Peak MM, Cutchin S, Riblet R, van Dongen JJ, Grosveld FG, Knoch TA, Murre C. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell. 2008;133:265–79.PubMedCrossRefGoogle Scholar
  30. 30.
    Carabana J, Ortigoza E, Krangel MS. Regulation of the murine Dδ2 promoter by upstream stimulatory factor 1, Runx1, and c-Myb. J Immunol. 2005;174:4144–52.PubMedGoogle Scholar
  31. 31.
    Hawwari A, Krangel MS. Regulation of TCR δ and α repertoires by local and long-distance control of variable gene segment chromatin structure. J Exp Med. 2005;202:467–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee YN, Alt FW, Reyes J, Gleason M, Zarrin AA, Jung D. Differential utilization of T cell receptor TCRα/TCRδ locus variable region gene segments is mediated by accessibility. Proc Natl Acad Sci USA. 2009;106:17487–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Hernandez-Munain C, Sleckman BP, Krangel MS. A developmental switch from TCR δ enhancer to TCR α enhancer function during thymocyte maturation. Immunity. 1999;10:723–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Thompson SD, Pelkonen J, Hurwitz JL. First T cell receptor α gene rearrangements during T cell ontogeny skew to the 5′ region of the Jα locus. J Immunol. 1990;145:2347–52.PubMedGoogle Scholar
  35. 35.
    Guo J, Hawwari A, Li H, Sun Z, Mahanta SK, Littman DR, Krangel MS, He YW. Regulation of the TCRα repertoire by the survival window of CD4+CD8+ thymocytes. Nat Immunol. 2002;3:469–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Hawwari A, Bock C, Krangel MS. Regulation of T cell receptor α gene assembly by a complex hierarchy of germline Jα promoters. Nat Immunol. 2005;6:481–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Abarrategui I, Krangel MS. Regulation of T cell receptor-α gene recombination by transcription. Nat Immunol. 2006;7:1109–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Abarrategui I, Krangel MS. Noncoding transcription controls downstream promoters to regulate T-cell receptor α recombination. EMBO J. 2007;26:4380–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Buch T, Rieux-Laucat F, Forster I, Rajewsky K. Failure of HY-specific thymocytes to escape negative selection by receptor editing. Immunity. 2002;16:707–18.PubMedCrossRefGoogle Scholar
  40. 40.
    Hawwari A, Krangel MS. Role for rearranged variable gene segments in directing secondary T cell receptor α recombination. Proc Natl Acad Sci USA. 2007;104:903–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Shih HY, Krangel MS. Distinct contracted conformations of the Tcra/Tcrd locus during Tcra and Tcrd recombination. J Exp Med. 2010;207:1835–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Fuxa M, Skok J, Souabni A, Salvagiotto G, Roldan E, Busslinger M. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 2004;18:411–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Reynaud D, Demarco IA, Reddy KL, Schjerven H, Bertolino E, Chen Z, Smale ST, Winandy S, Singh H. Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nat Immunol. 2008;9:927–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Liu H, Schmidt-Supprian M, Shi Y, Hobeika E, Barteneva N, Jumaa H, Pelanda R, Reth M, Skok J, Rajewsky K, Shi Y. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev. 2007;21:1179–89.PubMedCrossRefGoogle Scholar
  45. 45.
    Galande S, Purbey PK, Notani D, Kumar PP. The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev. 2007;17:408–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Phillips JE, Corces VG. CTCF: master weaver of the genome. Cell. 2009;137:1194–211.PubMedCrossRefGoogle Scholar
  47. 47.
    Bose T, Gerton JL. Cohesinopathies, gene expression, and chromatin organization. J Cell Biol. 2010;189:201–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Cai S, Lee CC, Kohwi-Shigematsu T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet. 2006;38:1278–88.PubMedCrossRefGoogle Scholar
  49. 49.
    Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell. 2008;132:422–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA. 2008;105:8309–14.PubMedCrossRefGoogle Scholar
  51. 51.
    Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature. 2008;451:796–801.PubMedCrossRefGoogle Scholar
  52. 52.
    Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, Fisher AG, Merkenschlager M. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature. 2009;460:410–3.PubMedGoogle Scholar
  53. 53.
    Han L, Lee DH, Szabo PE. CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region. Mol Cell Biol. 2008;28:1124–35.PubMedCrossRefGoogle Scholar
  54. 54.
    Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W. CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev. 2006;20:2349–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Degner SC, Wong TP, Jankevicius G, Feeney AJ. Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development. J Immunol. 2009;182:44–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ImmunologyDuke University Medical CenterDurhamUSA

Personalised recommendations