Advertisement

Immunologic Research

, Volume 49, Issue 1–3, pp 173–191 | Cite as

Ambient ozone and pulmonary innate immunity

  • Mashael Al-Hegelan
  • Robert M. Tighe
  • Christian Castillo
  • John W. Hollingsworth
Article

Abstract

Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk.

Keywords

Environmental Toll-like receptor TLR4 CD44 Hyaluronan Asthma Genetic Gene × environment 

Notes

Acknowledgments

The authors appreciate financial support from the NIH (ES016126, ES016659, ES016347, Al081672, HL007538).

References

  1. 1.
    Katsouyanni K, Zmirou D, Spix C, et al. Short-term effects of air pollution on health: a European approach using epidemiological time-series data. The APHEA project: background, objectives, design. Eur Respir J. 1995;8(6):1030–8.PubMedGoogle Scholar
  2. 2.
    Gryparis A, Forsberg B, Katsouyanni K, et al. Acute effects of ozone on mortality from the “air pollution and health: a European approach” project. Am J Respir Crit Care Med. 2004;170(10):1080–7.Google Scholar
  3. 3.
    Ito K, De Leon SF, Lippmann M. Associations between ozone and daily mortality: analysis and meta-analysis. Epidemiology. 2005;16(4):446–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Levy JI, Chemerynski SM, Sarnat JA. Ozone exposure and mortality: an empiric bayes metaregression analysis. Epidemiology. 2005;16(4):458–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Bell ML, McDermott A, Zeger SL, Samet JM, Dominici F. Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA. 2004;292(19):2372–8.Google Scholar
  6. 6.
    Liao H, Chen W-T, Seinfeld JH. Role of climate change in global predictions of future tropospheric ozone and aerosols. J Geophys Res. 2006;111(D12):1–18.Google Scholar
  7. 7.
    Murazaki K, Hess P. How does climate change contribute to surface ozone change over the United States? J Geophys Res. 2006;111(D5):1–16.Google Scholar
  8. 8.
    Morris GE, Parker LC, Ward JR, et al. Cooperative molecular and cellular networks regulate Toll-like receptor-dependent inflammatory responses. FASEB J. 2006;20(12):2153–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002;168(2):554–61.Google Scholar
  10. 10.
    Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162(7):3749–52.Google Scholar
  11. 11.
    Malcolm KC, Arndt PG, Manos EJ, Jones DA, Worthen GS. Microarray analysis of lipopolysaccharide-treated human neutrophils. Am J Physiol Lung Cell Mol Physiol. 2003;284(4):L663–70.PubMedGoogle Scholar
  12. 12.
    Miyamoto M, Prause O, Sjostrand M, Laan M, Lotvall J, Linden A. Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol. 2003;170(9):4665–72.Google Scholar
  13. 13.
    Weighardt H, Jusek G, Mages J, et al. Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. Eur J Immunol. 2004;34(2):558–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP. Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol. 2004;31(3):358–64.PubMedCrossRefGoogle Scholar
  15. 15.
    Guillot L, Medjane S, Le-Barillec K, et al. Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4. J Biol Chem. 2004;279(4):2712–8.Google Scholar
  16. 16.
    Arbour NC, Lorenz E, Schutte BC, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000;25(2):187–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Andonegui G, Bonder CS, Green F, et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest. 2003;111(7):1011–20.PubMedGoogle Scholar
  18. 18.
    Stephens RJ, Evans MJ, Sloan MF, Freeman G. A comprehensive ultrastructural study of pulmonary injury and repair in the rat resulting from exposures to less than one PPM ozone. Chest. 1974;65(Suppl):11S–3S.PubMedCrossRefGoogle Scholar
  19. 19.
    Foster WM, Stetkiewicz PT. Regional clearance of solute from the respiratory epithelia: 18–20 h postexposure to ozone. J Appl Physiol. 1996;81(3):1143–9.PubMedGoogle Scholar
  20. 20.
    Kehrl HR, Vincent LM, Kowalsky RJ, et al. Ozone exposure increases respiratory epithelial permeability in humans. Am Rev Respir Dis. 1987;135(5):1124–8.PubMedGoogle Scholar
  21. 21.
    Foster WM, Costa DL, Langenback EG. Ozone exposure alters tracheobronchial mucociliary function in humans. J Appl Physiol. 1987;63(3):996–1002.PubMedGoogle Scholar
  22. 22.
    Hippenstiel S, Opitz B, Schmeck B, Suttorp N. Lung epithelium as a sentinel and effector system in pneumonia–molecular mechanisms of pathogen recognition and signal transduction. Respir Res. 2006;7:97.PubMedCrossRefGoogle Scholar
  23. 23.
    Diamond G, Legarda D, Ryan LK. The innate immune response of the respiratory epithelium. Immunol Rev. 2000;173:27–38.PubMedCrossRefGoogle Scholar
  24. 24.
    Gribar SC, Richardson WM, Sodhi CP, Hackam DJ. No longer an innocent bystander: epithelial toll-like receptor signaling in the development of mucosal inflammation. Mol Med. 2008;14(9–10):645–59.PubMedGoogle Scholar
  25. 25.
    Mayer AK, Dalpke AH. Regulation of local immunity by airway epithelial cells. Arch Immunol Ther Exp (Warsz). 2007;55(6):353–62.CrossRefGoogle Scholar
  26. 26.
    Devlin RB, McDonnell WF, Mann R, et al. Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. Am J Respir Cell Mol Biol. 1991;4(1):72–81.PubMedGoogle Scholar
  27. 27.
    Devlin RB, McKinnon KP, Noah T, Becker S, Koren HS. Ozone-induced release of cytokines and fibronectin by alveolar macrophages and airway epithelial cells. Am J Physiol. 1994;266(6 Pt 1):L612–9.PubMedGoogle Scholar
  28. 28.
    Nichols BG, Woods JS, Luchtel DL, Corral J, Koenig JQ. Effects of ozone exposure on nuclear factor-kappaB activation and tumor necrosis factor-alpha expression in human nasal epithelial cells. Toxicol Sci. 2001;60(2):356–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Rusznak C, Devalia JL, Sapsford RJ, Davies RJ. Ozone-induced mediator release from human bronchial epithelial cells in vitro and the influence of nedocromil sodium. Eur Respir J. 1996;9(11):2298–305.PubMedCrossRefGoogle Scholar
  30. 30.
    Jaspers I, Chen LC, Flescher E. Induction of interleukin-8 by ozone is mediated by tyrosine kinase and protein kinase A, but not by protein kinase C. J Cell Physiol. 1998;177(2):313–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Voynow JA, Fischer BM, Zheng S, et al. NAD(P)H quinone oxidoreductase 1 is essential for ozone-induced oxidative stress in mice and humans. Am J Respir Cell Mol Biol. 2009;41(1):107–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang J, Wang S, Manzer R, McConville G, Mason RJ. Ozone induces oxidative stress in rat alveolar type II and type I-like cells. Free Radic Biol Med. 2006;40(11):1914–28.Google Scholar
  33. 33.
    Manzer R, Wang J, Nishina K, McConville G, Mason RJ. Alveolar epithelial cells secrete chemokines in response to IL-1beta and lipopolysaccharide but not to ozone. Am J Respir Cell Mol Biol. 2006;34(2):158–66.PubMedCrossRefGoogle Scholar
  34. 34.
    Pryor WA. How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts? Free Radic Biol Med. 1992;12(1):83–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Pryor WA, Squadrito GL, Friedman M. The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products. Free Radic Biol Med. 1995;19(6):935–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Leikauf GD, Zhao Q, Zhou S, Santrock J. Activation of eicosanoid metabolism in human airway epithelial cells by ozonolysis products of membrane fatty acids. Res Rep Health Eff Inst. 1995(71):1–15 (discussion 19–26).Google Scholar
  37. 37.
    Manzer R, Dinarello CA, McConville G, Mason RJ. Ozone exposure of macrophages induces an alveolar epithelial chemokine response through IL-1alpha. Am J Respir Cell Mol Biol. 2008;38(3):318–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Janic B, Umstead TM, Phelps DS, Floros J. An in vitro cell model system for the study of the effects of ozone and other gaseous agents on phagocytic cells. J Immunol Methods. 2003;272(1–2):125–34.Google Scholar
  39. 39.
    Becker S, Quay J, Koren HS. Effect of ozone on immunoglobulin production by human B cells in vitro. J Toxicol Environ Health. 1991;34(3):353–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Gilmour MI, Hmieleski RR, Stafford EA, Jakab GJ. Suppression and recovery of the alveolar macrophage phagocytic system during continuous exposure to 0.5 ppm ozone. Exp Lung Res. 1991;17(3):547–58.PubMedCrossRefGoogle Scholar
  41. 41.
    Gilmour MI, Park P, Selgrade MK. Ozone-enhanced pulmonary infection with Streptococcus zooepidemicus in mice. The role of alveolar macrophage function and capsular virulence factors. Am Rev Respir Dis. 1993;147(3):753–60.PubMedGoogle Scholar
  42. 42.
    Arsalane K, Gosset P, Vanhee D, et al. Ozone stimulates synthesis of inflammatory cytokines by alveolar macrophages in vitro. Am J Respir Cell Mol Biol. 1995;13(1):60–8.PubMedGoogle Scholar
  43. 43.
    Ishii Y, Yang H, Sakamoto T, et al. Rat alveolar macrophage cytokine production and regulation of neutrophil recruitment following acute ozone exposure. Toxicol Appl Pharmacol. 1997;147(2):214–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Larini A, Bocci V. Effects of ozone on isolated peripheral blood mononuclear cells. Toxicol In Vitro. 2005;19(1):55–61.PubMedCrossRefGoogle Scholar
  45. 45.
    Becker S, Madden MC, Newman SL, Devlin RB, Koren HS. Modulation of human alveolar macrophage properties by ozone exposure in vitro. Toxicol Appl Pharmacol. 1991;110(3):403–15.Google Scholar
  46. 46.
    Janic B, Umstead TM, Phelps DS, Floros J. Modulatory effects of ozone on THP-1 cells in response to SP-A stimulation. Am J Physiol Lung Cell Mol Physiol. 2005;288(2):L317–25.PubMedCrossRefGoogle Scholar
  47. 47.
    Garantziotis S, Li Z, Potts EN, et al. Hyaluronan mediates ozone-induced airway hyperresponsiveness in mice. J Biol Chem. 2009;284(17):11309–17.Google Scholar
  48. 48.
    Dahl M, Bauer AK, Arredouani M, et al. Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II. J Clin Invest. 2007;117(3):757–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Pulfer MK, Murphy RC. Formation of biologically active oxysterols during ozonolysis of cholesterol present in lung surfactant. J Biol Chem. 2004;279(25):26331–38.Google Scholar
  50. 50.
    Johnston RA, Mizgerd JP, Shore SA. CXCR2 is essential for maximal neutrophil recruitment and methacholine responsiveness after ozone exposure. Am J Physiol Lung Cell Mol Physiol. 2005;288(1):L61–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Peterson ML, Harder S, Rummo N, House D. Effect of ozone on leukocyte function in exposed human subjects. Environ Res. 1978;15(3):485–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Margalit M, Attias E, Attias D, Elstein D, Zimran A, Matzner Y. Effect of ozone on neutrophil function in vitro. Clin Lab Haematol. 2001;23(4):243–7.PubMedCrossRefGoogle Scholar
  53. 53.
    DeLorme MP, Yang H, Elbon-Copp C, Gao X, Barraclough-Mitchell H, Bassett DJ. Hyperresponsive airways correlate with lung tissue inflammatory cell changes in ozone-exposed rats. J Toxicol Environ Health A. 2002;65(19):1453–70.Google Scholar
  54. 54.
    Holtzman MJ, Fabbri LM, O’Byrne PM, et al. Importance of airway inflammation for hyperresponsiveness induced by ozone. Am Rev Respir Dis. 1983;127(6):686–90.PubMedGoogle Scholar
  55. 55.
    O’Byrne PM, Walters EH, Gold BD, et al. Neutrophil depletion inhibits airway hyperresponsiveness induced by ozone exposure. Am Rev Respir Dis. 1984;130(2):214–9.PubMedGoogle Scholar
  56. 56.
    Evans TW, Brokaw JJ, Chung KF, Nadel JA, McDonald DM. Ozone-induced bronchial hyperresponsiveness in the rat is not accompanied by neutrophil influx or increased vascular permeability in the trachea. Am Rev Respir Dis. 1988;138(1):140–4.PubMedGoogle Scholar
  57. 57.
    Koto H, Salmon M, Haddad el B, Huang TJ, Zagorski J, Chung KF. Role of cytokine-induced neutrophil chemoattractant (CINC) in ozone-induced airway inflammation and hyperresponsiveness. Am J Respir Crit Care Med. 1997;156(1):234–9.PubMedGoogle Scholar
  58. 58.
    Park JW, Taube C, Joetham A, et al. Complement activation is critical to airway hyperresponsiveness after acute ozone exposure. Am J Respir Crit Care Med. 2004;169(6):726–32.Google Scholar
  59. 59.
    Zhang LY, Levitt RC, Kleeberger SR. Differential susceptibility to ozone-induced airways hyperreactivity in inbred strains of mice. Exp Lung Res. 1995;21(4):503–18.PubMedCrossRefGoogle Scholar
  60. 60.
    Pino MV, Stovall MY, Levin JR, Devlin RB, Koren HS, Hyde DM. Acute ozone-induced lung injury in neutrophil-depleted rats. Toxicol Appl Pharmacol. 1992;114(2):268–76.PubMedCrossRefGoogle Scholar
  61. 61.
    Gonzalez-Navajas JM, Fine S, Law J, et al. TLR4 signaling in effector CD4 + T cells regulates TCR activation and experimental colitis in mice. J Clin Invest. 2010;120(2):570–81.Google Scholar
  62. 62.
    Fujimaki H, Ozawa M, Imai T, Shimizu F. Effect of short-term exposure to O3 on antibody response in mice. Environ Res. 1984;35(2):490–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Dziedzic D, White HJ. Thymus and pulmonary lymph node response to acute and subchronic ozone inhalation in the mouse. Environ Res. 1986;41(2):598–609.PubMedCrossRefGoogle Scholar
  64. 64.
    Dziedzic D, White HJ. T-cell activation in pulmonary lymph nodes of mice exposed to ozone. Environ Res. 1986;41(2):610–22.PubMedCrossRefGoogle Scholar
  65. 65.
    Fujimaki H, Shiraishi F, Ashikawa T, Murakami M. Changes in delayed hypersensitivity reaction in mice exposed to O3. Environ Res. 1987;43(1):186–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Van Loveren H, Rombout PJ, Wagenaar SS, Walvoort HC, Vos JG. Effects of ozone on the defense to a respiratory Listeria monocytogenes infection in the rat. Suppression of macrophage function and cellular immunity and aggravation of histopathology in lung and liver during infection. Toxicol Appl Pharmacol. 1988;94(3):374–93.PubMedCrossRefGoogle Scholar
  67. 67.
    Chen X, Gavett SH, Wills-Karp M. CD4+T lymphocyte modulation of ozone-induced murine pulmonary inflammation. Am J Respir Cell Mol Biol. 1995;12(4):396–403.PubMedGoogle Scholar
  68. 68.
    Komori HK, Meehan TF, Havran WL. Epithelial and mucosal gamma delta T cells. Curr Opin Immunol. 2006;18(5):534–8.PubMedCrossRefGoogle Scholar
  69. 69.
    King DP, Hyde DM, Jackson KA, et al. Cutting edge: protective response to pulmonary injury requires gamma delta T lymphocytes. J Immunol. 1999;162(9):5033–6.Google Scholar
  70. 70.
    Matsubara S, Takeda K, Jin N, et al. Vgamma1+T cells and tumor necrosis factor-alpha in ozone-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2009;40(4):454–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol. 2005;23:877–900.PubMedCrossRefGoogle Scholar
  72. 72.
    Pichavant M, Goya S, Meyer EH, et al. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med. 2008;205(2):385–93.Google Scholar
  73. 73.
    Wright JR. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol. 2005;5(1):58–68.PubMedCrossRefGoogle Scholar
  74. 74.
    Bridges JP, Davis HW, Damodarasamy M, et al. Pulmonary surfactant proteins A and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury. J Biol Chem. 2000;275(49):38848–55.Google Scholar
  75. 75.
    Kierstein S, Poulain FR, Cao Y, et al. Susceptibility to ozone-induced airway inflammation is associated with decreased levels of surfactant protein D. Respir Res. 2006;7:85.Google Scholar
  76. 76.
    Mikerov AN, Haque R, Gan X, Guo X, Phelps DS, Floros J. Ablation of SP-A has a negative impact on the susceptibility of mice to Klebsiella pneumoniae infection after ozone exposure: sex differences. Respir Res. 2008;9:77.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhu S, Kachel DL, Martin WJ 2nd, Matalon S. Nitrated SP-A does not enhance adherence of Pneumocystis carinii to alveolar macrophages. Am J Physiol. 1998;275(6 Pt 1):L1031–9.PubMedGoogle Scholar
  78. 78.
    Ding J, Umstead TM, Floros J, Phelps DS. Factors affecting SP-A-mediated phagocytosis in human monocytic cell lines. Respir Med. 2004;98(7):637–50.PubMedCrossRefGoogle Scholar
  79. 79.
    Mikerov AN, Wang G, Umstead TM, et al. Surfactant protein A2 (SP-A2) variants expressed in CHO cells stimulate phagocytosis of Pseudomonas aeruginosa more than do SP-A1 variants. Infect Immun. 2007;75(3):1403–12.PubMedCrossRefGoogle Scholar
  80. 80.
    Mikerov AN, Umstead TM, Huang W, Liu W, Phelps DS, Floros J. SP-A1 and SP-A2 variants differentially enhance association of Pseudomonas aeruginosa with rat alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2005;288(1):L150–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Khubchandani KR, Goss KL, Engelhardt JF, Snyder JM. In situ hybridization of SP-A mRNA in adult human conducting airways. Pediatr Pathol Mol Med. 2001;20(5):349–66.PubMedCrossRefGoogle Scholar
  82. 82.
    Khubchandani KR, Snyder JM. Surfactant protein A (SP-A): the alveolus and beyond. FASEB J. 2001;15(1):59–69.PubMedCrossRefGoogle Scholar
  83. 83.
    Wang G, Phelps DS, Umstead TM, Floros J. Human SP-A protein variants derived from one or both genes stimulate TNF-alpha production in the THP-1 cell line. Am J Physiol Lung Cell Mol Physiol. 2000;278(5):L946–54.PubMedGoogle Scholar
  84. 84.
    LeVine AM, Gwozdz J, Stark J, Bruno M, Whitsett J, Korfhagen T. Surfactant protein-A enhances respiratory syncytial virus clearance in vivo. J Clin Invest. 1999;103(7):1015–21.PubMedCrossRefGoogle Scholar
  85. 85.
    LeVine AM, Kurak KE, Bruno MD, Stark JM, Whitsett JA, Korfhagen TR. Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol. 1998;19(4):700–8.PubMedGoogle Scholar
  86. 86.
    LeVine AM, Kurak KE, Wright JR, et al. Surfactant protein-A binds group B Streptococcus enhancing phagocytosis and clearance from lungs of surfactant protein-A-deficient mice. Am J Respir Cell Mol Biol. 1999;20(2):279–86.PubMedGoogle Scholar
  87. 87.
    LeVine AM, Whitsett JA, Hartshorn KL, Crouch EC, Korfhagen TR. Surfactant protein D enhances clearance of influenza A virus from the lung in vivo. J Immunol. 2001;167(10):5868–73.Google Scholar
  88. 88.
    Haque R, Umstead TM, Ponnuru P, et al. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice. Toxicol Appl Pharmacol. 2007;220(1):72–82.Google Scholar
  89. 89.
    Peel JL, Metzger KB, Klein M, Flanders WD, Mulholland JA, Tolbert PE. Ambient air pollution and cardiovascular emergency department visits in potentially sensitive groups. Am J Epidemiol. 2007;165(6):625–33.Google Scholar
  90. 90.
    Mikerov AN, Umstead TM, Gan X, et al. Impact of ozone exposure on the phagocytic activity of human surfactant protein A (SP-A) and SP-A variants. Am J Physiol Lung Cell Mol Physiol. 2008;294(1):L121–30.PubMedCrossRefGoogle Scholar
  91. 91.
    Wang G, Umstead TM, Phelps DS, Al-Mondhiry H, Floros J. The effect of ozone exposure on the ability of human surfactant protein a variants to stimulate cytokine production. Environ Health Perspect. 2002;110(1):79–84.PubMedCrossRefGoogle Scholar
  92. 92.
    Mikerov AN, Gan X, Umstead TM, et al. Sex differences in the impact of ozone on survival and alveolar macrophage function of mice after Klebsiella pneumoniae infection. Respir Res. 2008;9:24.Google Scholar
  93. 93.
    Stagos D, Umstead TM, Phelps DS, et al. Inhibition of ozone-induced SP-A oxidation by plant polyphenols. Free Radic Res. 2007;41(3):357–66.PubMedCrossRefGoogle Scholar
  94. 94.
    Oosting RS, Van Iwaarden JF, Van Bree L, Verhoef J, Van Golde LM, Haagsman HP. Exposure of surfactant protein A to ozone in vitro and in vivo impairs its interactions with alveolar cells. Am J Physiol. 1992;262(1 Pt 1):L63–8.PubMedGoogle Scholar
  95. 95.
    Oosting RS, van Greevenbroek MM, Verhoef J, van Golde LM, Haagsman HP. Structural and functional changes of surfactant protein A induced by ozone. Am J Physiol. 1991;261(2 Pt 1):L77–83.PubMedGoogle Scholar
  96. 96.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–983.Google Scholar
  97. 97.
    Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–8.Google Scholar
  98. 98.
    Kleeberger SR, Reddy SP, Zhang LY, Cho HY, Jedlicka AE. Toll-like receptor 4 mediates ozone-induced murine lung hyperpermeability via inducible nitric oxide synthase. Am J Physiol Lung Cell Mol Physiol. 2001;280(2):L326–33.PubMedGoogle Scholar
  99. 99.
    Hollingsworth JW, 2nd, Cook DN, Brass DM, et al. The role of Toll-like receptor 4 in environmental airway injury in mice. Am J Respir Crit Care Med. 2004;170(2):126–32.Google Scholar
  100. 100.
    Williams AS, Leung SY, Nath P, et al. Role of TLR2, TLR4, and MyD88 in murine ozone-induced airway hyperresponsiveness and neutrophilia. J Appl Physiol. 2007;103(4):1189–95.PubMedCrossRefGoogle Scholar
  101. 101.
    Noble PW, McKee CM, Cowman M, Shin HS. Hyaluronan fragments activate an NF-kappa B/I-kappa B alpha autoregulatory loop in murine macrophages. J Exp Med. 1996;183(5):2373–8.Google Scholar
  102. 102.
    Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Gallo RL. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem. 2004;279(17):17079–84.Google Scholar
  103. 103.
    Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med. 2005;11(11):1173–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058–66.Google Scholar
  105. 105.
    Garantziotis S, Li Z, Potts EN, et al. TLR4 is necessary for hyaluronan-mediated airway hyperresponsiveness after ozone inhalation. Am J Respir Crit Care Med. 2010;181(7):666–75.Google Scholar
  106. 106.
    Bauer AK, Travis EL, Malhotra SS, Rondini EA, Walker C, Cho HY, et al. Identification of novel susceptibility genes in ozone-induced inflammation in mice. Eur Respir J. 2010;36(2):428–37.PubMedCrossRefGoogle Scholar
  107. 107.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.PubMedCrossRefGoogle Scholar
  108. 108.
    Chung KF, Adcock IM. Induction of nuclear factor-kappa B by exposure to ozone and inhibition by glucocorticoids. Methods Enzymol. 2000;319:551–62.PubMedCrossRefGoogle Scholar
  109. 109.
    Punjabi CJ, Laskin JD, Pendino KJ, Goller NL, Durham SK, Laskin DL. Production of nitric oxide by rat type II pneumocytes: increased expression of inducible nitric oxide synthase following inhalation of a pulmonary irritant. Am J Respir Cell Mol Biol. 1994;11(2):165–72.PubMedGoogle Scholar
  110. 110.
    Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994;269(7):4705–8.Google Scholar
  111. 111.
    Fakhrzadeh L, Laskin JD, Laskin DL. Ozone-induced production of nitric oxide and TNF-alpha and tissue injury are dependent on NF-kappaB p50. Am J Physiol Lung Cell Mol Physiol. 2004;287(2):L279–85.PubMedCrossRefGoogle Scholar
  112. 112.
    Fakhrzadeh L, Laskin JD, Laskin DL. Deficiency in inducible nitric oxide synthase protects mice from ozone-induced lung inflammation and tissue injury. Am J Respir Cell Mol Biol. 2002;26(4):413–9.PubMedGoogle Scholar
  113. 113.
    Laskin DL, Sunil V, Guo Y, Heck DE, Laskin JD. Increased nitric oxide synthase in the lung after ozone inhalation is associated with activation of NF-kappa B. Environ Health Perspect. 1998;106(Suppl 5):1175–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Kleeberger SR, Levitt RC, Zhang LY, et al. Linkage analysis of susceptibility to ozone-induced lung inflammation in inbred mice. Nat Genet. 1997;17(4):475–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Cho HY, Zhang LY, Kleeberger SR. Ozone-induced lung inflammation and hyperreactivity are mediated via tumor necrosis factor-alpha receptors. Am J Physiol Lung Cell Mol Physiol. 2001;280(3):L537–46.PubMedGoogle Scholar
  116. 116.
    Shore SA, Schwartzman IN, Le Blanc B, Murthy GG, Doerschuk CM. Tumor necrosis factor receptor 2 contributes to ozone-induced airway hyperresponsiveness in mice. Am J Respir Crit Care Med. 2001;164(4):602–7.Google Scholar
  117. 117.
    Cho HY, Morgan DL, Bauer AK, Kleeberger SR. Signal transduction pathways of tumor necrosis factor–mediated lung injury induced by ozone in mice. Am J Respir Crit Care Med. 2007;175(8):829–39.Google Scholar
  118. 118.
    Yang IA, Holz O, Jorres RA, et al. Association of tumor necrosis factor-alpha polymorphisms and ozone-induced change in lung function. Am J Respir Crit Care Med. 2005;171(2):171–6.Google Scholar
  119. 119.
    Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095–147.Google Scholar
  120. 120.
    Moore PE, Lahiri T, Laporte JD, Church T, Panettieri RA Jr, Shore SA. Selected contribution: synergism between TNF-alpha and IL-1 beta in airway smooth muscle cells: implications for beta-adrenergic responsiveness. J Appl Physiol. 2001;91(3):1467–74.PubMedGoogle Scholar
  121. 121.
    Wu ZX, Barker JS, Batchelor TP, Dey RD. Interleukin (IL)-1 regulates ozone-enhanced tracheal smooth muscle responsiveness by increasing substance P (SP) production in intrinsic airway neurons of ferret. Respir Physiol Neurobiol. 2008;164(3):300–11.Google Scholar
  122. 122.
    Park JW, Taube C, Swasey C, et al. Interleukin-1 receptor antagonist attenuates airway hyperresponsiveness following exposure to ozone. Am J Respir Cell Mol Biol. 2004;30(6):830–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Johnston RA, Mizgerd JP, Flynt L, Quinton LJ, Williams ES, Shore SA. Type I interleukin-1 receptor is required for pulmonary responses to subacute ozone exposure in mice. Am J Respir Cell Mol Biol. 2007;37(4):477–84.PubMedCrossRefGoogle Scholar
  124. 124.
    Verhein KC, Jacoby DB, Fryer AD. IL-1 receptors mediate persistent, but not acute, airway hyperreactivity to ozone in guinea pigs. Am J Respir Cell Mol Biol. 2008;39(6):730–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Tilg H, Dinarello CA, Mier JW. IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunol Today. 1997;18(9):428–32.PubMedCrossRefGoogle Scholar
  126. 126.
    Tilg H, Trehu E, Atkins MB, Dinarello CA, Mier JW. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood. 1994;83(1):113–8.Google Scholar
  127. 127.
    DiCosmo BF, Geba GP, Picarella D, et al. Airway epithelial cell expression of interleukin-6 in transgenic mice. Uncoupling of airway inflammation and bronchial hyperreactivity. J Clin Invest. 1994;94(5):2028–35.PubMedCrossRefGoogle Scholar
  128. 128.
    Kuhn C 3rd, Homer RJ, Zhu Z, et al. Airway hyperresponsiveness and airway obstruction in transgenic mice. Morphologic correlates in mice overexpressing interleukin (IL)-11 and IL-6 in the lung. Am J Respir Cell Mol Biol. 2000;22(3):289–95.PubMedGoogle Scholar
  129. 129.
    Vincent R, Vu D, Hatch G, et al. Sensitivity of lungs of aging Fischer 344 rats to ozone: assessment by bronchoalveolar lavage. Am J Physiol. 1996;271(4 Pt 1):L555–65.PubMedGoogle Scholar
  130. 130.
    Shore SA, Johnston RA, Schwartzman IN, Chism D, Krishna Murthy GG. Ozone-induced airway hyperresponsiveness is reduced in immature mice. J Appl Physiol. 2002;92(3):1019–28.PubMedGoogle Scholar
  131. 131.
    Samet JM, Hatch GE, Horstman D, et al. Effect of antioxidant supplementation on ozone-induced lung injury in human subjects. Am J Respir Crit Care Med. 2001;164(5):819–25.Google Scholar
  132. 132.
    Yu M, Zheng X, Witschi H, Pinkerton KE. The role of interleukin-6 in pulmonary inflammation and injury induced by exposure to environmental air pollutants. Toxicol Sci. 2002;68(2):488–97.PubMedCrossRefGoogle Scholar
  133. 133.
    Ohmori Y, Wyner L, Narumi S, Armstrong D, Stoler M, Hamilton TA. Tumor necrosis factor-alpha induces cell type and tissue-specific expression of chemoattractant cytokines in vivo. Am J Pathol. 1993;142(3):861–70.PubMedGoogle Scholar
  134. 134.
    Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol. 2002;71(1):1-8.Google Scholar
  135. 135.
    Devlin RB, McDonnell WF, Becker S, et al. Time-dependent changes of inflammatory mediators in the lungs of humans exposed to 0.4 ppm ozone for 2 hr: a comparison of mediators found in bronchoalveolar lavage fluid 1 and 18 hr after exposure. Toxicol Appl Pharmacol. 1996;138(1):176–85.PubMedCrossRefGoogle Scholar
  136. 136.
    Kleeberger SR, Ohtsuka Y, Zhang LY, Longphre M. Airway responses to chronic ozone exposure are partially mediated through mast cells. J Appl Physiol. 2001;90(2):713–23.PubMedCrossRefGoogle Scholar
  137. 137.
    Kleeberger SR, Seiden JE, Levitt RC, Zhang LY. Mast cells modulate acute ozone-induced inflammation of the murine lung. Am Rev Respir Dis. 1993;148(5):1284–91.PubMedGoogle Scholar
  138. 138.
    Noviski N, Brewer JP, Skornik WA, Galli SJ, Drazen JM, Martin TR. Mast cell activation is not required for induction of airway hyperresponsiveness by ozone in mice. J Appl Physiol. 1999;86(1):202–10.PubMedGoogle Scholar
  139. 139.
    Goldstein E, Tyler WS, Hoeprich PD, Eagle C. Ozone and the antibacterial defense mechanisms of the murine lung. Arch Intern Med. 1971;127(6):1099–102.PubMedCrossRefGoogle Scholar
  140. 140.
    Aranyi C, Vana SC, Thomas PT, et al. Effects of subchronic exposure to a mixture of O3, SO2, and (NH4)2SO4 on host defenses of mice. J Toxicol Environ Health. 1983;12(1):55–71.PubMedCrossRefGoogle Scholar
  141. 141.
    Miller S, Ehrlich R. Susceptibility to respiratory infections of animals exposed to ozone. I. Susceptibility to Klebsiella pneumoniae. J Infect Dis. 1958;103(2):145–9.PubMedGoogle Scholar
  142. 142.
    Thomas GB, Fenters JD, Ehrlich R, Gardner DE. Effects of exposure to ozone on susceptibility to experimental tuberculosis. Toxicol Lett. 1981;9(1):11–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Valentine R. An in vitro system for exposure of lung cells to gases: effects of ozone on rat macrophages. J Toxicol Environ Health. 1985;16(1):115–26.PubMedCrossRefGoogle Scholar
  144. 144.
    Hollingsworth JW, Maruoka S, Li Z, et al. Ambient ozone primes pulmonary innate immunity in mice. J Immunol. 2007;179(7):4367–75.Google Scholar
  145. 145.
    Li Z, Potts EN, Piantadosi CA, Foster WM, Hollingsworth JW. Hyaluronan fragments contribute to the ozone-primed immune response to lipopolysaccharide. J Immunol. 2010;185(11):6891–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Getahun D, Demissie K, Rhoads GG. Recent trends in asthma hospitalization and mortality in the United States. J Asthma. 2005;42(5):373–8.PubMedCrossRefGoogle Scholar
  147. 147.
    Fanta CH. Asthma. N Engl J Med. 2009;360(10):1002–14.Google Scholar
  148. 148.
    Last JA, Ward R, Temple L, Pinkerton KE, Kenyon NJ. Ovalbumin-induced airway inflammation and fibrosis in mice also exposed to ultrafine particles. Inhal Toxicol. 2004;16(2):93–102.PubMedCrossRefGoogle Scholar
  149. 149.
    Depuydt PO, Lambrecht BN, Joos GF, Pauwels RA. Effect of ozone exposure on allergic sensitization and airway inflammation induced by dendritic cells. Clin Exp Allergy. 2002;32(3):391–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Wagner JG, Hotchkiss JA, Harkema JR. Enhancement of nasal inflammatory and epithelial responses after ozone and allergen coexposure in Brown Norway rats. Toxicol Sci. 2002;67(2):284–94.PubMedCrossRefGoogle Scholar
  151. 151.
    Ozawa M, Fujimaki H, Imai T, Honda Y, Watanabe N. Suppression of IgE antibody production after exposure to ozone in mice. Int Arch Allergy Appl Immunol. 1985;76(1):16–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Jorres R, Nowak D, Magnussen H. The effect of ozone exposure on allergen responsiveness in subjects with asthma or rhinitis. Am J Respir Crit Care Med. 1996;153(1):56–64.PubMedGoogle Scholar
  153. 153.
    Kehrl HR, Peden DB, Ball B, Folinsbee LJ, Horstman D. Increased specific airway reactivity of persons with mild allergic asthma after 7.6 hours of exposure to 0.16 ppm ozone. J Allergy Clin Immunol. 1999;104(6):1198–204.PubMedCrossRefGoogle Scholar
  154. 154.
    Bernstein JA, Alexis N, Barnes C, et al. Health effects of air pollution. J Allergy Clin Immunol. 2004;114(5):1116–23.PubMedCrossRefGoogle Scholar
  155. 155.
    Steerenberg PA, Garssen J, van Bree L, van Loveren H. Ozone alters T-helper cell mediated bronchial hyperreactivity and resistance to bacterial infection. Exp Toxicol Pathol. 1996;48(6):497–9.PubMedGoogle Scholar
  156. 156.
    Van Loveren H, Steerenberg PA, Garssen J, Van Bree L. Interaction of environmental chemicals with respiratory sensitization. Toxicol Lett. 1996;86(2–3):163–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Stenfors N, Bosson J, Helleday R, et al. Ozone exposure enhances mast-cell inflammation in asthmatic airways despite inhaled corticosteroid therapy. Inhal Toxicol. 2010;22(2):133–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Meunier L, Bohjanen K, Voorhees JJ, Cooper KD. Retinoic acid upregulates human Langerhans cell antigen presentation and surface expression of HLA-DR and CD11c, a beta 2 integrin critically involved in T-cell activation. J Invest Dermatol. 1994;103(6):775–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Lenschow DJ, Su GH, Zuckerman LA, et al. Expression and functional significance of an additional ligand for CTLA-4. Proc Natl Acad Sci USA. 1993;90(23):11054–8.Google Scholar
  160. 160.
    Freeman GJ, Borriello F, Hodes RJ, et al. Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J Exp Med. 1993;178(6):2185–92.Google Scholar
  161. 161.
    Koike E, Kobayashi T. Ozone exposure enhances antigen-presenting activity of interstitial lung cells in rats. Toxicology. 2004;196(3):217–27.Google Scholar
  162. 162.
    Koike E, Watanabe H, Kobayashi T. Exposure to ozone enhances antigen-presenting activity concentration dependently in rats. Toxicology. 2004;197(1):37–46.Google Scholar
  163. 163.
    Lay JC, Alexis NE, Kleeberger SR, et al. Ozone enhances markers of innate immunity and antigen presentation on airway monocytes in healthy individuals. J Allergy Clin Immunol. 2007;120(3):719–22.PubMedCrossRefGoogle Scholar
  164. 164.
    Delayre-Orthez C, de Blay F, Frossard N, Pons F. Dose-dependent effects of endotoxins on allergen sensitization and challenge in the mouse. Clin Exp Allergy. 2004;34(11):1789–95.PubMedCrossRefGoogle Scholar
  165. 165.
    Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med. 2002;196(12):1645–51.Google Scholar
  166. 166.
    Redecke V, Hacker H, Datta SK, et al. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol. 2004;172(5):2739–43.Google Scholar
  167. 167.
    Wan GH, Li CS, Lin RH. Airborne endotoxin exposure and the development of airway antigen-specific allergic responses. Clin Exp Allergy. 2000;30(3):426–32.PubMedCrossRefGoogle Scholar
  168. 168.
    Goldsmith CA, Hamada K, Ning Y, et al. Effects of environmental aerosols on airway hyperresponsiveness in a murine model of asthma. Inhal Toxicol. 1999;11(11):981–98.PubMedCrossRefGoogle Scholar
  169. 169.
    Stephens R, Chaplin DD. IgE cross-linking or lipopolysaccharide treatment induces recruitment of Th2 cells to the lung in the absence of specific antigen. J Immunol. 2002;169(10):5468–76.Google Scholar
  170. 170.
    Alexis NE, Lay JC, Hazucha M, et al. Low-level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans. Inhal Toxicol. 2010;22(7):593–600.PubMedCrossRefGoogle Scholar
  171. 171.
    Neuhaus-Steinmetz U, Uffhausen F, Herz U, Renz H. Priming of allergic immune responses by repeated ozone exposure in mice. Am J Respir Cell Mol Biol. 2000;23(2):228–33.PubMedGoogle Scholar
  172. 172.
    Osebold JW, Gershwin LJ, Zee YC. Studies on the enhancement of allergic lung sensitization by inhalation of ozone and sulfuric acid aerosol. J Environ Pathol Toxicol. 1980;3(5–6):221–34.PubMedGoogle Scholar
  173. 173.
    Osebold JW, Zee YC, Gershwin LJ. Enhancement of allergic lung sensitization in mice by ozone inhalation. Proc Soc Exp Biol Med. 1988;188(3):259–64.PubMedGoogle Scholar
  174. 174.
    Gershwin LJ, Osebold JW, Zee YC. Immunoglobulin E-containing cells in mouse lung following allergen inhalation and ozone exposure. Int Arch Allergy Appl Immunol. 1981;65(3):266–77.PubMedCrossRefGoogle Scholar
  175. 175.
    Schelegle ES, Miller LA, Gershwin LJ, et al. Repeated episodes of ozone inhalation amplifies the effects of allergen sensitization and inhalation on airway immune and structural development in Rhesus monkeys. Toxicol Appl Pharmacol. 2003;191(1):74–85.Google Scholar
  176. 176.
    Biagini RE, Moorman WJ, Lewis TR, Bernstein IL. Ozone enhancement of platinum asthma in a primate model. Am Rev Respir Dis. 1986;134(4):719–25.PubMedGoogle Scholar
  177. 177.
    Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev. 2000;173:89–97.PubMedCrossRefGoogle Scholar
  178. 178.
    Hollingsworth JW, Free ME, Li Z, Andrews LN, Nakano H, Cook DN. Ozone activates pulmonary dendritic cells and promotes allergic sensitization through a Toll-like receptor 4-dependent mechanism. J Allergy Clin Immunol. 2010;125(5):1167–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mashael Al-Hegelan
    • 1
  • Robert M. Tighe
    • 1
  • Christian Castillo
    • 1
  • John W. Hollingsworth
    • 1
    • 2
  1. 1.Department of Medicine, Division of Pulmonary, Allergy, and Critical Care MedicineDuke University Medical CenterDurhamUSA
  2. 2.Department of ImmunologyDuke University Medical CenterDurhamUSA

Personalised recommendations