Immunologic Research

, Volume 48, Issue 1–3, pp 110–121

Quiescent T cells and HIV: an unresolved relationship

  • Dimitrios N. Vatakis
  • Christopher C. Nixon
  • Jerome A. Zack


The ability of HIV to infect quiescent CD4+ T cells has been a topic of intense debate. While early studies suggested that the virus could not infect this particular T cell subset, subsequent studies using more sensitive protocols demonstrated that these cells could inefficiently support HIV infection. Additional studies showed that the kinetics of infection in quiescent cells was delayed and multiple stages of the viral life cycle were marred by inefficiencies. Despite that, proviral DNA has been found in these cells presenting them as a potential viral reservoir. Therefore, a better understanding of the relationship between HIV and quiescent T cells may lead to further advances in the field of HIV.


Quiescent T cells HIV resistance HIV latency Host restriction 


  1. 1.
    Cotner T, Williams JM, Christenson L, Shapiro HM, Strom TB, Strominger J. Simultaneous flow cytometric analysis of human T cell activation antigen expression and DNA content. J Exp Med. 1983;157:461–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Healy JI, Goodnow CC. Positive versus negative signaling by lymphocyte antigen receptors. Annu Rev Immunol. 1998;16:645–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Tzachanis D, Freeman GJ, Hirano N, van Puijenbroek AA, Delfs MW, Berezovskaya A, et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol. 2001;2:1174–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Walker LS, Abbas AK. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol. 2002;2:11–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Yusuf I, Fruman DA. Regulation of quiescence in lymphocytes. Trends Immunol. 2003;24:380–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Tzachanis D, Lafuente EM, Li L, Boussiotis VA. Intrinsic and extrinsic regulation of T lymphocyte quiescence. Leuk Lymphoma. 2004;45:1959–67.CrossRefPubMedGoogle Scholar
  7. 7.
    Kuo CT, Veselits ML, Leiden JM. LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science. 1997;277:1986–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Buckley AF, Kuo CT, Leiden JM. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc–dependent pathway. Nat Immunol. 2001;2:698–704.CrossRefPubMedGoogle Scholar
  9. 9.
    Di Santo JP. Lung Krupple-like factor: a quintessential player in T cell quiescence. Nat Immunol. 2001;2:667–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Coffer PJ. Transcriptional regulation of lymphocyte quiescence: as cunning as a FOX. Trends Immunol. 2003;24:470–1. (Author reply 471).CrossRefPubMedGoogle Scholar
  11. 11.
    Haaland RE, Yu W, Rice AP. Identification of LKLF-regulated genes in quiescent CD4 + T lymphocytes. Mol Immunol. 2005;42:627–41.CrossRefPubMedGoogle Scholar
  12. 12.
    Yusuf I, Kharas MG, Chen J, Peralta RQ, Maruniak A, Sareen P, et al. KLF4 is a FOXO target gene that suppresses B cell proliferation. Int Immunol. 2008;20:671–81.CrossRefPubMedGoogle Scholar
  13. 13.
    Tzachanis D, Boussiotis VA. Tob, a member of the APRO family, regulates immunological quiescence and tumor suppression. Cell Cycle. 2009;8:1019–25.PubMedGoogle Scholar
  14. 14.
    Burgering BM, Kops GJ. Cell cycle and death control: long live Forkheads. Trends Biochem Sci. 2002;27:352–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Burgering BM. A brief introduction to FOXOlogy. Oncogene. 2008;27:2258–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Medema RH, Kops GJ, Bos JL, Burgering BM. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000;404:782–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002;419:316–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 2002;22:7842–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Fabre S, Lang V, Harriague J, Jobart A, Unterman TG, Trautmann A. Stable activation of phosphatidylinositol 3-kinase in the T cell immunological synapse stimulates Akt signaling to FoxO1 nuclear exclusion and cell growth control. J Immunol. 2005;174:4161–71.PubMedGoogle Scholar
  20. 20.
    Peng SL. Foxo in the immune system. Oncogene. 2008;27:2337–44.CrossRefPubMedGoogle Scholar
  21. 21.
    Ouyang W, Beckett O, Flavell RA, Li MO. An essential role of the Forkhead-box transcription factor FOXO1 in control of T cell homeostasis and tolerance. Immunity. 2009;30:358–71.CrossRefPubMedGoogle Scholar
  22. 22.
    Matsuda S, Kawamura-Tsuzuku J, Ohsugi M, Yoshida M, Emi M, Nakamura Y, et al. Tob, a novel protein that interacts with p185erbB2, is associated with anti-proliferative activity. Oncogene. 1996;12:705–13.PubMedGoogle Scholar
  23. 23.
    Jia S, Meng A. Tob genes in development and homeostasis. Dev Dyn. 2007;236:913–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Stevenson M. HIV-1 pathogenesis. Nat Med. 2003;9:853–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Weinberg JB, Matthews TJ, Cullen BR, Malim MH. Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med. 1991;174:1477–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Lewis P, Hensel M, Emerman M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 1992;11:3053–8.PubMedGoogle Scholar
  27. 27.
    McDougal JS, Mawle A, Cort SP, Nicholson JK, Cross GD, Scheppler-Campbell JA, et al. Cellular tropism of the human retrovirus HTLV-III/LAV. I. Role of T cell activation and expression of the T4 antigen. J Immunol. 1985;135:3151–62.PubMedGoogle Scholar
  28. 28.
    Zagury D, Bernard J, Leonard R, Cheynier R, Feldman M, Sarin PS, et al. Long-term cultures of HTLV-III–infected T cells: a model of cytopathology of T-cell depletion in AIDS. Science. 1986;231:850–3.CrossRefPubMedGoogle Scholar
  29. 29.
    Gowda SD, Stein BS, Mohagheghpour N, Benike CJ, Engleman EG. Evidence that T cell activation is required for HIV-1 entry in CD4 + lymphocytes. J Immunol. 1989;142:773–80.PubMedGoogle Scholar
  30. 30.
    Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 1990;9:1551–60.PubMedGoogle Scholar
  31. 31.
    Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990;61:213–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Zack JA, Haislip AM, Krogstad P, Chen IS. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol. 1992;66:1717–25.PubMedGoogle Scholar
  33. 33.
    Spina CA, Guatelli JC, Richman DD. Establishment of a stable, inducible form of human immunodeficiency virus type 1 DNA in quiescent CD4 lymphocytes in vitro. J Virol. 1995;69:2977–88.PubMedGoogle Scholar
  34. 34.
    Ramilo O, Bell KD, Uhr JW, Vitetta ES. Role of CD25 + and CD25− T cells in acute HIV infection in vitro. J Immunol. 1993;150:5202–8.PubMedGoogle Scholar
  35. 35.
    Borvak J, Chou CS, Bell K, Van Dyke G, Zola H, Ramilo O, et al. Expression of CD25 defines peripheral blood mononuclear cells with productive versus latent HIV infection. J Immunol. 1995;155:3196–204.PubMedGoogle Scholar
  36. 36.
    Chou CS, Ramilo O, Vitetta ES. Highly purified CD25- resting T cells cannot be infected de novo with HIV-1. Proc Natl Acad Sci USA. 1997;94:1361–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Tang S, Patterson B, Levy JA. Highly purified quiescent human peripheral blood CD4 + T cells are infectible by human immunodeficiency virus but do not release virus after activation. J Virol. 1995;69:5659–65.PubMedGoogle Scholar
  38. 38.
    Bukrinsky MI, Stanwick TL, Dempsey MP, Stevenson M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science. 1991;254:423–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, Siliciano RF. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med. 1995;1:1284–90.CrossRefPubMedGoogle Scholar
  40. 40.
    Korin YD, Zack JA. Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J Virol. 1998;72:3161–8.PubMedGoogle Scholar
  41. 41.
    Unutmaz D, KewalRamani VN, Marmon S, Littman DR. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med. 1999;189:1735–46.CrossRefPubMedGoogle Scholar
  42. 42.
    Scripture-Adams DD, Brooks DG, Korin YD, Zack JA. Interleukin-7 induces expression of latent human immunodeficiency virus type 1 with minimal effects on T-cell phenotype. J Virol. 2002;76:13077–82.CrossRefPubMedGoogle Scholar
  43. 43.
    Ducrey-Rundquist O, Guyader M, Trono D. Modalities of interleukin-7-induced human immunodeficiency virus permissiveness in quiescent T lymphocytes. J Virol. 2002;76:9103–11.CrossRefPubMedGoogle Scholar
  44. 44.
    Barat C, Gervais P, Tremblay MJ. Engagement of ICAM-3 provides a costimulatory signal for human immunodeficiency virus type 1 replication in both activated and quiescent CD4 + T lymphocytes: implications for virus pathogenesis. J Virol. 2004;78:6692–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Tardif MR, Tremblay MJ. LFA-1 is a key determinant for preferential infection of memory CD4 + T cells by human immunodeficiency virus type 1. J Virol. 2005;79:13714–24.CrossRefPubMedGoogle Scholar
  46. 46.
    Thibault S, Tardif MR, Barat C, Tremblay MJ. TLR2 signaling renders quiescent naive and memory CD4 + T cells more susceptible to productive infection with X4 and R5 HIV-type 1. J Immunol. 2007;179:4357–66.PubMedGoogle Scholar
  47. 47.
    Barat C, Gilbert C, Tremblay MJ. Efficient replication of human immunodeficiency virus type 1 in resting CD4 + T lymphocytes is induced by coculture with autologous dendritic cells in the absence of foreign antigens. J Virol. 2009;83:2778–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Oswald-Richter K, Grill SM, Leelawong M, Unutmaz D. HIV infection of primary human T cells is determined by tunable thresholds of T cell activation. Eur J Immunol. 2004;34:1705–14.CrossRefPubMedGoogle Scholar
  49. 49.
    Vatakis DN, Nixon CC, Bristol G, Zack JA. Differentially stimulated CD4 + T cells display altered human immunodeficiency virus infection kinetics: implications for the efficacy of antiviral agents. J Virol. 2009;83:3374–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Saleh S, Solomon A, Wightman F, Xhilaga M, Cameron PU, Lewin SR. CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4 + T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood. 2007;110:4161–4.CrossRefPubMedGoogle Scholar
  51. 51.
    Cole SW, Korin YD, Fahey JL, Zack JA. Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production. J Immunol. 1998;161:610–6.PubMedGoogle Scholar
  52. 52.
    Eckstein DA, Penn ML, Korin YD, Scripture-Adams DD, Zack JA, Kreisberg JF, et al. HIV-1 actively replicates in naive CD4(+) T cells residing within human lymphoid tissues. Immunity. 2001;15:671–82.CrossRefPubMedGoogle Scholar
  53. 53.
    Korin YD, Zack JA. Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol. 1999;73:6526–32.PubMedGoogle Scholar
  54. 54.
    Plesa G, Dai J, Baytop C, Riley JL, June CH, O’Doherty U. Addition of deoxynucleosides enhances human immunodeficiency virus type 1 integration and 2LTR formation in resting CD4 + T cells. J Virol. 2007;81:13938–42.CrossRefPubMedGoogle Scholar
  55. 55.
    Ganesh L, Burstein E, Guha-Niyogi A, Louder MK, Mascola JR, Klomp LW, et al. The gene product Murr1 restricts HIV-1 replication in resting CD4 + lymphocytes. Nature. 2003;426:853–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Simon JH, Gaddis NC, Fouchier RA, Malim MH. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med. 1998;4:1397–400.CrossRefPubMedGoogle Scholar
  57. 57.
    Simon JH, Miller DL, Fouchier RA, Soares MA, Peden KW, Malim MH. The regulation of primate immunodeficiency virus infectivity by Vif is cell species restricted: a role for Vif in determining virus host range and cross-species transmission. EMBO J. 1998;17:1259–67.CrossRefPubMedGoogle Scholar
  58. 58.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418:646–50.CrossRefPubMedGoogle Scholar
  59. 59.
    Conticello SG, Harris RS, Neuberger MS. The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol. 2003;13:2009–13.CrossRefPubMedGoogle Scholar
  60. 60.
    Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, et al. DNA deamination mediates innate immunity to retroviral infection. Cell. 2003;113:803–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 2003;424:99–103.CrossRefPubMedGoogle Scholar
  62. 62.
    Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, Bollman B, et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell. 2003;114:21–31.CrossRefPubMedGoogle Scholar
  63. 63.
    Marin M, Rose KM, Kozak SL, Kabat D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med. 2003;9:1398–403.CrossRefPubMedGoogle Scholar
  64. 64.
    Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med. 2003;9:1404–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Stopak K, de Noronha C, Yonemoto W, Greene WC. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell. 2003;12:591–601.CrossRefPubMedGoogle Scholar
  66. 66.
    Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science. 2003;302:1056–60.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature. 2003;424:94–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC. Cellular APOBEC3G restricts HIV-1 infection in resting CD4 + T cells. Nature. 2005;435:108–14.CrossRefPubMedGoogle Scholar
  69. 69.
    Kamata M, Nagaoka Y, Chen IS. Reassessing the role of APOBEC3G in human immunodeficiency virus type 1 infection of quiescent CD4 + T-cells. PLoS Pathog. 2009;5:e1000342.CrossRefPubMedGoogle Scholar
  70. 70.
    Santoni de Sio FR, Trono D. APOBEC3G-depleted resting CD4 + T cells remain refractory to HIV1 infection. PLoS ONE. 2009;4:6571.CrossRefGoogle Scholar
  71. 71.
    Manganaro L, Lusic M, Gutierrez MI, Cereseto A, Del Sal G, Giacca M. Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4 + T lymphocytes. Nat Med. 2010;16:329–33.CrossRefPubMedGoogle Scholar
  72. 72.
    Vatakis DN, Kim S, Kim N, Chow SA, Zack JA. HIV Integration efficiency and site selection in Quiescent CD4 + T cells. J Virol. 2009; doi: 10.1128/JVI.00356-09.
  73. 73.
    Vatakis DN, Bristol G, Wilkinson TA, Chow SA, Zack JA. Immediate activation fails to rescue efficient human immunodeficiency virus replication in quiescent CD4 + T cells. J Virol. 2007;81:3574–82.CrossRefPubMedGoogle Scholar
  74. 74.
    Swiggard WJ, O’Doherty U, McGain D, Jeyakumar D, Malim MH. Long HIV type 1 reverse transcripts can accumulate stably within resting CD4 + T cells while short ones are degraded. AIDS Res Hum Retroviruses. 2004;20:285–95.CrossRefPubMedGoogle Scholar
  75. 75.
    Brady T, Agosto LM, Malani N, Berry CC, O’Doherty U, Bushman F. HIV integration site distributions in resting and activated CD4 + T cells infected in culture. AIDS. 2009;23:1461–71.CrossRefPubMedGoogle Scholar
  76. 76.
    Pierson TC, Zhou Y, Kieffer TL, Ruff CT, Buck C, Siliciano RF. Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J Virol. 2002;76:8518–31.CrossRefPubMedGoogle Scholar
  77. 77.
    Zhou Y, Zhang H, Siliciano JD, Siliciano RF. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4 + T cells. J Virol. 2005;79:2199–210.CrossRefPubMedGoogle Scholar
  78. 78.
    Swiggard WJ, Baytop C, Yu JJ, Dai J, Li C, Schretzenmair R, et al. Human immunodeficiency virus type 1 can establish latent infection in resting CD4 + T cells in the absence of activating stimuli. J Virol. 2005;79:14179–88.CrossRefPubMedGoogle Scholar
  79. 79.
    O’Doherty U, Swiggard WJ, Malim MH. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol. 2000;74:10074–80.CrossRefPubMedGoogle Scholar
  80. 80.
    O’Doherty U, Swiggard WJ, Jeyakumar D, McGain D, Malim MH. A sensitive, quantitative assay for human immunodeficiency virus type 1 integration. J Virol. 2002;76:10942–50.CrossRefPubMedGoogle Scholar
  81. 81.
    Agosto LM, Yu JJ, Dai J, Kaletsky R, Monie D, O’Doherty U. HIV-1 integrates into resting CD4 + T cells even at low inoculums as demonstrated with an improved assay for HIV-1 integration. Virology. 2007;368:60–72.CrossRefPubMedGoogle Scholar
  82. 82.
    Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S, Liu X, et al. Resting CD4 + T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol. 2004;78:6122–33.CrossRefPubMedGoogle Scholar
  83. 83.
    Nishimura Y, Sadjadpour R, Mattapallil JJ, Igarashi T, Lee W, Buckler-White A, et al. High frequencies of resting CD4 + T cells containing integrated viral DNA are found in rhesus macaques during acute lentivirus infections. Proc Natl Acad Sci USA. 2009;106:8015–20.CrossRefPubMedGoogle Scholar
  84. 84.
    Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15:893–900.CrossRefPubMedGoogle Scholar
  85. 85.
    Auewarakul P, Wacharapornin P, Srichatrapimuk S, Chutipongtanate S, Puthavathana P. Uncoating of HIV-1 requires cellular activation. Virology. 2005;337:93–101.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dimitrios N. Vatakis
    • 1
  • Christopher C. Nixon
    • 2
  • Jerome A. Zack
    • 1
    • 2
  1. 1.Department of Medicine, Division of Hematology/OncologyDavid Geffen School of Medicine at UCLA, UCLA AIDS InstituteLos AngelesUSA
  2. 2.Department of Microbiology, Immunology and Molecular GeneticsDavid Geffen School of Medicine at UCLA, UCLA AIDS InstituteLos AngelesUSA

Personalised recommendations