Immunologic Research

, Volume 48, Issue 1–3, pp 59–71

A challenge for the future: aging and HIV infection



Older individuals (≥50 years of age) are increasingly becoming a new at-risk group for HIV-1 infection and, together with those surviving longer due to the introduction of anti-retroviral therapy (ART), it is predicted that more than half of all HIV-1-infected individuals in the United States will be greater than 50 years of age in the year 2015. Older individuals diagnosed with HIV-1 are prone to faster disease progression and reduced T-cell reconstitution despite successful virologic control with anti-retroviral therapy (ART). There is also growing evidence that the T-cell compartment in HIV-1+ adults displays an aged phenotype, and HIV-1-infected individuals are increasingly diagnosed with clinical conditions more commonly seen in older uninfected persons. As aging in the absence of HIV infection is associated with alterations in T-cell function and immunosenescence, the combined impact of both HIV-1 infection and aging may provide an explanation for poorer clinical outcomes observed in older HIV-1-infected individuals. Thus, the development of novel therapeutics to stimulate immune function and delay immunosenescence is critical and would be beneficial to both the elderly and HIV-1-infected individuals.


HIV ART CD4+ T-cells CD8+ T-cells IL-7 TAT2 Aging 


  1. 1.
    UNAIDS/WHO: AIDS epidemic update: November 2009, Geneva, Switzerland, 2009.Google Scholar
  2. 2.
    UNAIDS/WHO: Epidemiological fact sheet on HIV and AIDS: United States of America 2008 Update, Geneva, Switzerland, 2008.Google Scholar
  3. 3.
    Center for Disease Control and Prevention: HIV/AIDS Surveillance Report 2006, Atlanta, Georgia, 2008.Google Scholar
  4. 4.
    Effros RB, Fletcher CV, Gebo K, Halter JB, Hazzard WR, Horne FM, Huebner RE, Janoff EN, Justice AC, Kuritzkes D, Nayfield SG, Plaeger SF, Schmader KE, Asworth JR, Campanelli, Clayton CP, Rada B, Woolard NF, High KP. Aging and infectious diseases: workshop on HIV infection and aging: what is known and future research directions. Clin Infect Dis. 2008;47:542–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Plankey MW, Ostrow DG, Stall R, Cox C, Li X, Peck JA, Jacobson LP. The relationship between methamphetamine and popper use and risk of HIV seroconversion in the multicenter AIDS cohort study. J Acquir Immune Defic Syndr. 2007;45:85–92.CrossRefPubMedGoogle Scholar
  6. 6.
    Effros RB. Long-term immunological memory against viruses. Mech Aging Dev. 2000;121:161–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Herndler-Brandstetter D, Cioca DP, Grubeck-Loebenstein B. Immunizations in the elderly: do they live up to their promise? Wien Med Wochenschr. 2006;156:130–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Webster RG. Immunity to influenza in the elderly. Vaccine. 2000;18:1686–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Rosenberg PS, Goedert JJ, Biggar RJ. Effect of age at seroconversion on the natural AIDS incubation distribution. Multicenter Hemophilia Cohort Study and the International Registry of Seroconverters. AIDS. 1994;8:803–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Darby SC, Ewart DW, Giangrande PL, Spooner RJ, Rizza CR. Importance of age at infection with HIV-1 for survival and development of AIDS in UK haemophilia population. UK Haemophilia centre directors’ organisation. Lancet. 1996;347:1573–9.PubMedGoogle Scholar
  11. 11.
    Desquilbet L, Jacobson LP, Fried LP, Phair JP, Jamieson BD, Holloway M, Margolick JB. HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J Gerontol A Biol Sci Med Sci. 2007;62:1279–86.PubMedGoogle Scholar
  12. 12.
    Engels EA, Pfeiffer RM, Landgren O, Moore RD. Immunologic and virologic predictors of AIDS-related non-hodgkin lymphoma in the highly active antiretroviral therapy era. J Acquir Immune Defic Syndr. 2010;54:78–84.CrossRefPubMedGoogle Scholar
  13. 13.
    D’Souza G, Wiley DJ, Li X, Chmiel JS, Margolick JB, Cranston RD, Jacobson LP. Incidence and epidemiology of anal cancer in the multicenter AIDS cohort study. J Acquir Immune Defic Syndr. 2008;48:491–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Dorrucci M, Suligoi B, Serraino D, Tirelli U, Rezza G. Incidence of invasive cervical cancer in a cohort of HIV-seropositive women before and after the introduction of highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2001;26:377–80.PubMedGoogle Scholar
  15. 15.
    Thomas J, Doherty SM. HIV infection–a risk factor for osteoporosis. J Acquir Immune Defic Syndr. 2003;33:281–91.PubMedGoogle Scholar
  16. 16.
    Fausto A, Bongiovanni M, Cicconi P, Menicagli L, Ligabo EV, Melzi S, Bini T, Sardanelli F, Cornalba G, Monforte A. Potential predictive factors of osteoporosis in HIV-positive subjects. Bone. 2006;38:893–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Deeks SG, Phillips AN. HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ. 2009;338:288–92.CrossRefGoogle Scholar
  18. 18.
    Cinti SK, Gandhi T, Riddell J. Non-AIDS-defining cancers: should antiretroviral therapy be initiated earlier? AIDS Read. 2008;18:18–32.PubMedGoogle Scholar
  19. 19.
    Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr. 2009;51:554–61.CrossRefPubMedGoogle Scholar
  20. 20.
    Fulop T, Larbi A, Douziech N, Levesque I, Varin A, Herbein G. Cytokine receptor signalling and aging. Mech Ageing Dev. 2006;127:526–37.CrossRefPubMedGoogle Scholar
  21. 21.
    Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA, Herzenberg LA. CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest. 1995;95:2061–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Rabin RL, Roederer M, Maldonado Y, Petru A, Herzenberg LA, Herzenberg LA. Altered representation of naive and memory CD8 T cell subsets in HIV-infected children. J Clin Invest. 1995;95:2054–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Bazdar DA, Kalinowska M, Sieg SF. Interleukin-7 receptor signaling is deficient in CD4 + T cells from HIV-infected persons and is inversely associated with aging. J Infect Dis. 2009;199:1019–28.CrossRefPubMedGoogle Scholar
  24. 24.
    Kuby J, Goldsby RA, Osborne BA, Kindt TJ. Immunology. New York: WH Freeman and Company; 2000.Google Scholar
  25. 25.
    Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, Polis MA, Haase AT, Feinberg MB, Sullivan JL, Jamieson BD, Zack JA, Picker LJ, Koup RA. Changes in thymic function with age and during the treatment of HIV infection. Nature. 1998;396:690–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Aspinall R, Andrew D. Thymic involution in aging. J Clin Immunol. 2000;20:250–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Kilpatrick RD, Rickabaugh T, Hultin LE, Hultin P, Hausner MA, Detels R, Phair J, Jamieson BD. Homeostasis of the naive CD4 + T cell compartment during aging. J Immunol. 2008;180:1499–507.PubMedGoogle Scholar
  28. 28.
    Kohler S, Wagner U, Pierer M, Kimmig S, Oppmann B, Mowes B, Julke K, Romagnani C, Thiel A. Post-thymic in vivo proliferation of naive CD4 + T cells constrains the TCR repertoire in healthy human adults. Eur J Immunol. 2005;35:1987–94.CrossRefPubMedGoogle Scholar
  29. 29.
    Kimmig S, Przybylski GK, Schmidt CA, Laurisch K, Mowes B, Radbruch A, Thiel A. Two subsets of Naive T Helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med. 2002;195:789–94.CrossRefPubMedGoogle Scholar
  30. 30.
    Watt SM, Williamson J, Genevier H, Fawcett J, Simmons DL, Hatzfeld A, Nesbitt SA, Coombe DR. The heparin binding PECAM-1 adhesion molecule is expressed by CD34 + hematopoietic precursor cells with early myeloid and B-lymphoid cell phenotypes. Blood. 1993;82:2649–63.PubMedGoogle Scholar
  31. 31.
    Newman PJ. Switched at birth: a new family for PECAM-1. J Clin Invest. 1999;103:5–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Bergom C, Goel R, Paddock C, Gao C, Newman DK, Matsuyama S, Newman PJ. The cell-adhesion and signaling molecule PECAM-1 is a molecular mediator of resistance to genotoxic chemotherapy. Cancer Biol Ther. 2006;5:1699–707.PubMedGoogle Scholar
  33. 33.
    Gao C, Sun W, Christofidou-Solomidou M, Sawada M, Newman DK, Bergom C, Albelda SM, Matsuyama S, Newman PJ. PECAM-1 functions as a specific and potent inhibitor of mitochondrial-dependent apoptosis. Blood. 2003;102:169–79.CrossRefPubMedGoogle Scholar
  34. 34.
    Bird IN, Taylor V, Newton JP, Spragg JH, Simmons DL, Salmon M, Buckley CD. Homophilic PECAM-1(CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration. J Cell Sci. 1999;112(Pt12):1989–97.PubMedGoogle Scholar
  35. 35.
    Evans PC, Taylor ER, Kilshaw PJ. Signaling through CD31 protects endothelial cells from apoptosis. Transplant. 2001;71:457–60.CrossRefGoogle Scholar
  36. 36.
    Ferrero E, Belloni D, Contini P, Foglieni C, Ferrero ME, Fabbri M, Poggi A, Zocchi MR. Transendothelial migration leads to protection from starvation-induced apoptosis in CD34 + CD14 + circulating precursors: evidence for PECAM-1 involvement through Akt/PKB activation. Blood. 2003;101:186–93.CrossRefPubMedGoogle Scholar
  37. 37.
    Limaye V, Li X, Hahn C, Xia P, Berndt MC, Vadas MA, Gamble JR. Sphingosine kinase-1 enhances endothelial cell survival through a PECAM-1-dependent activation of PI-3 K/Akt and regulation of Bcl-2 family members. Blood. 2005;105:3169–77.CrossRefPubMedGoogle Scholar
  38. 38.
    Noble KE, Wickremasinghe RG, DeCornet C, Panayiotidis P, Yong KL. Monocytes stimulate expression of the Bcl-2 family member, A1, in endothelial cells and confer protection against apoptosis. J Immunol. 1999;162:1376–83.PubMedGoogle Scholar
  39. 39.
    Cao W, Jamieson BD, Hultin LE, Hultin PM, Effros RB, Detels R. Premature aging of T cells is associated with faster HIV-1 disease progression. J Acquir Immune Defic Syndr. 2009;50:137–47.CrossRefPubMedGoogle Scholar
  40. 40.
    Pfister G, Weiskopf D, Lazurdi L, Kovaiou RD, Cioca DP, Keller M, Lorbeg B, Parson W, Grubeck-Loebenstein B. Naive t cells in the elderly: are they still there? Ann N Y Acad Sci. 2006;1067:152–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR. A highly conserved repetitive dna sequence, (TTAGGG)n, present at the telomeres of human chromosomes. PNAS. 1988;85:6622–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Greider CW. Mammalian telomere dynamics: Healing, fragmentation shortening and stabilization. Curr Opin Genet Dev. 1994;203–11.Google Scholar
  43. 43.
    Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 1991;256:271–82.PubMedGoogle Scholar
  44. 44.
    Swain S, Clise-Dwyer K, Haynes L. Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol. 2005;17:370–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Sun JC, Williams MA, Bevan M. CD4 + T cells are required for the maintenance, not programming, of memory CD8 + T cells after acute infection. Nat Immunol. 2004;5:927–33.CrossRefPubMedGoogle Scholar
  46. 46.
    Trimble LA, Shankar P, Patterson M, Daily JP, Lieberman J. Human immunodeficiency virus-specific circulating CD8 T lymphocytes have down-modulated CD3zeta and CD28, key signaling molecules for T- cell activation. J Virol. 2000;74:7320–30.CrossRefPubMedGoogle Scholar
  47. 47.
    Whisler RL, Newhouse YG, Bagenstose SE. Age-related reductions in the activation of mitogen-activated protein kinases p44mapk/ERK1 and p42mapk/ERK2 in human T cells stimulated via ligation of the T cell receptor complex. Cell Immunol. 1996;168:201–10.CrossRefPubMedGoogle Scholar
  48. 48.
    Kirk JB, Goetz MB. Human immunodeficiency virus in an aging population, a complication of success. J Am Geriatr Soc. 2009;57:2129–38.CrossRefPubMedGoogle Scholar
  49. 49.
    Appay V, Rowland-Jones SL. Premature ageing of the immune system: the cause of AIDS? Trends Immunol. 2002;23:580–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Di MM, Sereti I, Matthews LT, Natarajan V, Adelsberger J, Lempicki R, Yoder C, Jones E, Chow C, Metcalf JA, Sidorov IA, Dimitrov DS, Polis MA, Kovacs JA. Naive T-cell dynamics in human immunodeficiency virus type 1 infection: effects of highly active antiretroviral therapy provide insights into the mechanisms of naive T-cell depletion. J Virol. 2006;80:2665–74.CrossRefGoogle Scholar
  51. 51.
    Chattopadhyay PK, Douek DC, Gange SJ, Chadwick KR, Hellerstein M, Margolick JB. Longitudinal assessment of de novo T cell production in relation to HIV-associated T cell homeostasis failure. AIDS Res Hum Retroviruses. 2006;22:501–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Eckstein DA, Penn ML, Korin YD, Scripture-Adams DD, Zack JA, Kreisberg JF, Roederer M, Sherman P, Chin PS, Goldsmith MA. HIV-1 actively replicates in naive CD4(+) T cells residing within human lymphoid tissues. Immunity. 2001;15:671–82.Google Scholar
  53. 53.
    Kalayjian RC, Landay A, Pollard RB, Taub DD, Gross BH, Francis IR, Sevin A, Spritzler J, Chernoff M, Namkung A, Fox L, Martinez A, Waterman K, Fiscus SA, Sha B, Johnson D, Slater S, Rousseau F, Lederman MM, Adult AIDS Clinical Trial Group 5015 Protocol Team, and Adult AIDS Clinical Trial Group 5113 Protocol Team. Age-related immune dysfunction in health and in human immunodeficiency virus (HIV) disease: association of age and HIV infection with naive CD8 + cell depletion, reduced expression of CD28 on CD8 + cells, and reduced thymic volumes. J Infect Dis. 2003;187:1924–33.Google Scholar
  54. 54.
    Aldrovandi GM, Feuer G, Gao L, Jamieson B, Kristeva M, Chen ISY, Zack JA. The SCID-hu mouse as a model for HIV-1 infection. Nature. 1993;363:732–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Jamieson BD, Douek DC, Killian S, Hultin LE, Scripture-Adams DD, Giorgi JV, Marelli D, Koup RA, Zack JA. Generation of functional thymocytes in the human adult. Immunity. 1999;10:569–75.CrossRefPubMedGoogle Scholar
  56. 56.
    Withers-Ward ES, Amado RG, Koka PS, Jamieson BD, Kaplan AH, Chen ISY, Zack JA. Transient renewal of thymopoiesis in HIV-infected human thymic implants following antiviral therapy. Nat Med. 1997;3:1102–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Luciano AA, Lederman MM, Valentin-Torres A, Bazdar DA, Sieg SF. Impaired induction of CD27 and CD28 predicts naive CD4 T cell proliferation defects in HIV disease. J Immunol. 2007;179:3543–9.PubMedGoogle Scholar
  58. 58.
    Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Franceschi C, Passeri M, Sansoni P. Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood. 2000;95:2860–8.PubMedGoogle Scholar
  59. 59.
    Alegre ML, K. Frauwirth A, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol. 2001;1:220–8.Google Scholar
  60. 60.
    Effros RB, Allsopp R, Chiu C-P, Hausner MA, Hirji K, Wang L, Harley CB, Villeponteau B, West MD, Giorgi JV. Shortened telomeres in the expanded CD28CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS. 1996;10:F17–22.CrossRefPubMedGoogle Scholar
  61. 61.
    Posnett DN, Edinger JW, Manalavan JS, Irwin C, Marodon G. Differentiation of human CD8 T cells: implications for in vivo persistence of CD8+ CD28 cytotoxic effector clones. Int Immunol. 1999;11:229–41.CrossRefPubMedGoogle Scholar
  62. 62.
    Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, Kronenberg M, Cohen D, Schächter F. Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol. 1994;29:601–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F. Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol. 2002;37:445–53.CrossRefPubMedGoogle Scholar
  64. 64.
    Brinchmann JE, Dobloug JH, Heger BH, Haaheim LL, Sannes M, Egeland T. Expression of costimulatory molecule CD28 on T cells in human immunodeficiency virus type 1 infection: functional and clinical correlations. J Infect Dis. 1994;169:730–8.PubMedGoogle Scholar
  65. 65.
    Valdez H, Smith KY, Landay A, Connick E, Kuritzkes DR, Kessler H, Fox L, Spritzler J, Roe J, Lederman MB, Lederman HM, Evans TG, Heath-Chiozzi M, Lederman MM. Response to immunization with recall and neoantigens after prolonged administration of an HIV-1 protease inhibitor-containing regimen. ACTG 375 team. AIDS Clinical Trials Group. AIDS. 2000;14:11–21.CrossRefPubMedGoogle Scholar
  66. 66.
    Choremi-Papadopoulou H, Gargalianos VP, Kordossis T, Iniotaki-Theodoraki A, Kosmidis J. Downregulation of CD28 surface antigen on CD4 + and CD8 + T lymphocytes during HIV-1 infection. J Acquir Immune Defic Syndr. 1994;7:245–53.PubMedGoogle Scholar
  67. 67.
    Lange CG, Lederman MM, Madero JS, Medvik K, Asaad R, Pacheko C, Carranza C, Valdez H. Impact of suppression of viral replication by highly active antiretroviral therapy on immune function and phenotype in chronic HIV-1 infection. J Acquir Immune Defic Syndr. 2002;30:33–40.CrossRefPubMedGoogle Scholar
  68. 68.
    Borthwick NJ, Bofill M, Gombert WM, Akbar AN, Medina E, Sagawa K, Lipman MC, Johnson MA, Janossy G. Lymphocyte activation in HIV-1 infection. II. Functional defects of CD28 T cells. AIDS. 1994;8:431–41.CrossRefPubMedGoogle Scholar
  69. 69.
    Monteiro J, Batliwalla FM, Ostrer H, Gregersen PK. Shortened telomeres in clonally expanded CD28CD8+ T cells imply a replicative history that is distinct from their CD28+CD8+ counterparts. J Immunol. 1996;156:3587–90.PubMedGoogle Scholar
  70. 70.
    Appay V, Almeida JR, Sauce D, Autran B, Papagno L. Accelerated immune senescence and HIV-1 infection. Exp Gerontol. 2007;42:432–7.CrossRefPubMedGoogle Scholar
  71. 71.
    Nelson BH. IL-2, regulatory T cells, and tolerance. J Immunol. 2004;172:3983–8.PubMedGoogle Scholar
  72. 72.
    Murphy WJ, Longo DL. Growth hormone as an immunomodulating therapeutic agent. Immunol Today. 2000;21:211–3.CrossRefPubMedGoogle Scholar
  73. 73.
    Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell. 1997;89:1033–41.CrossRefPubMedGoogle Scholar
  74. 74.
    von Freeden-Jeffry U, Solvason N, Howard M, Murray R. The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression. Immunity. 1997;7:147–54.CrossRefGoogle Scholar
  75. 75.
    Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA. 2001;98:8732–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol. 2000;1:426–32.CrossRefPubMedGoogle Scholar
  77. 77.
    Goldrath AW, Sivakumar PV, Glaccum M, Kennedy MK, Bevan MJ, Benoist C, Mathis D, Butz EA. Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8 + T cells. J Exp Med. 2002;195:1515–22.CrossRefPubMedGoogle Scholar
  78. 78.
    Seddon B, Tomlinson P, Zamoyska R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat Immunol. 2003;4:680–6.CrossRefPubMedGoogle Scholar
  79. 79.
    Abdul-Hai A, Or R, Slavin S, Friedman G, Weiss L, Matsa D, Ben-Yehuda A. Stimulation of immune reconstitution by interleukin-7 after syngeneic bone marrow transplantation in mice. Exp Hematol. 1996;24:1416–22.PubMedGoogle Scholar
  80. 80.
    Bolotin E, Smogorzewska M, Smith S, Widmer M, Weinberg K. Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood. 1996;88:1887–94.PubMedGoogle Scholar
  81. 81.
    Mackall CL, Fry TJ, Bare C, Morgan P, Galbraith A, Gress RE. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood. 2001;97:1491–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Sportes C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, Fleisher TA, Krumlauf MC, Babb RR, Chow CK, Fry TJ, Engels J, Buffet R, Morre M, Amato RJ, Venzon DJ, Korngold R, Pecora A, Gress RE, Mackall CL. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med. 2008;205:1701–14.CrossRefPubMedGoogle Scholar
  83. 83.
    Levy Y, Lacabaratz C, Weiss L, Viard JP, Goujard C, Lelievre JD, Boue F, Molina JM, Rouzioux C, vettand-Fenoel V, Croughs T, Beq S, Thiebaut R, Chene G, Morre M, Delfraissy JF. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest. 2009;119:997–1007.PubMedGoogle Scholar
  84. 84.
    Fauce SR, Jamieson BD, Chin AC, Mitsuyasu RT, Parish ST, Ng HL, Kitchen CM, Yang OO, Harley CB, Effros RB. Telomerase-based pharmacologic enhancement of antiviral function of human CD8 + T lymphocytes. J Immunol. 2008;181:7400–6.PubMedGoogle Scholar
  85. 85.
    Effros RB. Telomerase induction in T cells: a cure for aging and disease? Exp Gerontol. 2007;42:416–20.CrossRefPubMedGoogle Scholar
  86. 86.
    Blackburn EH. Telomerases. Annu Rev Biochem. 1992;61:113–29.CrossRefPubMedGoogle Scholar
  87. 87.
    Greider CW. Telomeres, telomerase and senescence. Bioessays. 1990;12:363–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S, Yamakido M. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol. 1995;155:3711–5.PubMedGoogle Scholar
  89. 89.
    Roth A, Yssel H, Pene J, Chavez EA, Schertzer M, Lansdorp PM, Spits H, Luiten RM. Telomerase levels control the lifespan of human T lymphocytes. Blood. 2003;102:849–57.CrossRefPubMedGoogle Scholar
  90. 90.
    Bodnar AG, Kim NW, Effros RB, Chiu CP. Mechanism of telomerase induction during T cell activation. Exp Cell Res. 1996;228:58–64.CrossRefPubMedGoogle Scholar
  91. 91.
    Weng NP, Palmer LD, Levine BL, Lane HC, June CH, Hodes RJ. Tales of tails: regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunol Rev. 1997;160:43–54.CrossRefPubMedGoogle Scholar
  92. 92.
    Valenzuela HF, Effros RB. Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol. 2002;105:117–25.CrossRefPubMedGoogle Scholar
  93. 93.
    Dagarag M, Evazyan T, Rao N, Effros RB. Genetic manipulation of telomerase in HIV-specific CD8 + T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization. J Immunol. 2004;173:6303–11.PubMedGoogle Scholar
  94. 94.
    Lichterfeld M, Mou D, Cung TD, Williams KL, Waring MT, Huang J, Pereyra F, Trocha A, Freeman GJ, Rosenberg ES, Walker BD, Yu XG. Telomerase activity of HIV-1-specific CD8 + T cells: constitutive up-regulation in controllers and selective increase by blockade of PD ligand 1 in progressors. Blood. 2008;112:3679–87.CrossRefPubMedGoogle Scholar
  95. 95.
    Mascolini M. What speeds aging with HIV-and what can be done about it? Res Initiat Treat Action. 2010;1–59.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.UCLA AIDS Institute and Department of MedicineDavid Geffen School of Medicine, University of CaliforniaLos AngelesUSA

Personalised recommendations