Immunologic Research

, Volume 46, Issue 1–3, pp 12–22 | Cite as

Regulating functional cell fates in CD8 T cells

  • Protul A. ShrikantEmail author
  • Rajesh Rao
  • Qingsheng Li
  • Joshua Kesterson
  • Cheryl Eppolito
  • Axel Mischo
  • Pankaj Singhal


The attributes of specificity and memory enable CD8+ T cells to provide long-lasting protection against a variety of challenges. Although, the importance of CD8+ T cells for protection against intracellular infections and transformation is well-established, the functional type; effector phenotypes (Tc1, Tc2, Tc17 and/or Tcreg) and/or memory (effector or central), of CD8+ T cells most desirable for tumor immunity is not established. To determine the tumor efficacy of various effector types and/or memory CD8 T cells, it is imperative to better understand intrinsic and extrinsic factors that regulate CD8+ T cell differentiation and use this information to generate and test distinct functional cell types in tumor models. The focus of our laboratory investigations is to identify the extrinsic factors such as antigen strength, co-stimulatory molecules, cytokines, and small molecule modifiers that regulate intrinsic programs for various effector and/or memory cell fate in antigen specific CD8 T cells. The use of this information to generate immunity in murine tumor models has facilitated development of new adoptive cell transfer (ACT) as well as immunization strategies for cancer treatment.


CD8+ T cell Cytokines Transcriptional regulators Effector and memory cell fate Adoptive cell transfer and tumor immunity 


  1. 1.
    Butz EA, Bevan MJ. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity. 1998;8:167–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Moskophidis D, Kioussis D. Contribution of virus-specific CD8+ cytotoxic T cells to virus clearance or pathologic manifestations of influenza virus infection in a T cell receptor transgenic mouse model. J Exp Med. 1998;188:223–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, et al. Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev. 2006;211:81–92.CrossRefPubMedGoogle Scholar
  4. 4.
    Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol. 1999;162:3256–62.PubMedGoogle Scholar
  5. 5.
    Williams MA, Holmes BJ, Sun JC, Bevan MJ. Developing and maintaining protective CD8+ memory T cells. Immunol Rev. 2006;211:146–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Sun JC, Williams MA, Bevan MJ. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol. 2004;5:927–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Badovinac VP, Porter BB, Harty JT. CD8+ T cell contraction is controlled by early inflammation. Nat Immunol. 2004;5:809–17.CrossRefPubMedGoogle Scholar
  8. 8.
    Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature. 2006;441:890–3.CrossRefPubMedGoogle Scholar
  9. 9.
    Sprent J, Surh CD. T cell memory. Annu Rev Immunol. 2002;20:551–79.CrossRefPubMedGoogle Scholar
  10. 10.
    Harty JT, Tvinnereim AR, White DW. CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol. 2000;18:275–308.CrossRefPubMedGoogle Scholar
  11. 11.
    Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol. 2003;77:68–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.CrossRefPubMedGoogle Scholar
  13. 13.
    Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299–308.CrossRefPubMedGoogle Scholar
  15. 15.
    June CH. Adoptive T cell therapy for cancer in the clinic. J Clin Invest. 2007;117:1466–76.CrossRefPubMedGoogle Scholar
  16. 16.
    Klebanoff CA, Gattinoni L, Restifo NP. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev. 2006;211:214–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA. 2002;99:16168–73.CrossRefPubMedGoogle Scholar
  18. 18.
    Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 2009;15:808–13.CrossRefPubMedGoogle Scholar
  19. 19.
    van Stipdonk MJ, Lemmens EE, Schoenberger SP. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol. 2001;2:423–9.PubMedGoogle Scholar
  20. 20.
    Bevan MJ, Fink PJ. The CD8 response on autopilot. Nat Immunol. 2001;2:381–2.PubMedGoogle Scholar
  21. 21.
    Kaech SM, Ahmed R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol. 2001;2:415–22.PubMedGoogle Scholar
  22. 22.
    Iezzi G, Karjalainen K, Lanzavecchia A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity. 1998;8:89–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity. 2007;27:281–95.CrossRefPubMedGoogle Scholar
  24. 24.
    Curtsinger JM, Lins DC, Mescher MF. Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med. 2003;197:1141–51.CrossRefPubMedGoogle Scholar
  25. 25.
    Prlic M, Williams MA, Bevan MJ. Requirements for CD8 T-cell priming, memory generation and maintenance. Curr Opin Immunol. 2007;19:315–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25:171–92.CrossRefPubMedGoogle Scholar
  27. 27.
    Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–50.CrossRefPubMedGoogle Scholar
  28. 28.
    Takemoto N, Intlekofer AM, Northrup JT, Wherry EJ, Reiner SL. Cutting edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J Immunol. 2006;177:7515–9.PubMedGoogle Scholar
  29. 29.
    Intlekofer AM, Takemoto N, Kao C, Banerjee A, Schambach F, Northrop JK, et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J Exp Med. 2007;204:2015–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100:655–69.CrossRefPubMedGoogle Scholar
  31. 31.
    Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity. 2006;24:677–88.CrossRefPubMedGoogle Scholar
  32. 32.
    Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89:587–96.CrossRefPubMedGoogle Scholar
  33. 33.
    Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science. 2002;295:338–42.CrossRefPubMedGoogle Scholar
  34. 34.
    Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 2003;302:1041–3.CrossRefPubMedGoogle Scholar
  35. 35.
    Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol. 2005;6:1236–44.CrossRefPubMedGoogle Scholar
  36. 36.
    Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103:253–62.CrossRefPubMedGoogle Scholar
  37. 37.
    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–84.CrossRefPubMedGoogle Scholar
  38. 38.
    Zheng Y, Collins SL, Lutz MA, Allen AN, Kole TP, Zarek PE, et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol. 2007;178:2163–70.PubMedGoogle Scholar
  39. 39.
    Powell JD, Lerner CG, Schwartz RH. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol. 1999;162:2775–84.PubMedGoogle Scholar
  40. 40.
    Kang J, Huddleston SJ, Fraser JM, Khoruts A. De novo induction of antigen-specific CD4+ CD25+ Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J Leukoc Biol. 2008;83:1230–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med. 2008;205:565–74.CrossRefPubMedGoogle Scholar
  42. 42.
    Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–44.CrossRefPubMedGoogle Scholar
  43. 43.
    Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, et al. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009;460:108–12.CrossRefPubMedGoogle Scholar
  44. 44.
    Bullock TN, Colella TA, Engelhard VH. The density of peptides displayed by dendritic cells affects immune responses to human tyrosinase and gp100 in HLA-A2 transgenic mice. J Immunol. 2000;164:2354–61.PubMedGoogle Scholar
  45. 45.
    Wherry EJ, Puorro KA, Porgador A, Eisenlohr LC. The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained. J Immunol. 1999;163:3735–45.PubMedGoogle Scholar
  46. 46.
    Pardigon N, Bercovici N, Calbo S, Santos-Lima EC, Liblau R, Kourilsky P, et al. Role of co-stimulation in CD8+ T cell activation. Int Immunol. 1998;10:619–30.CrossRefPubMedGoogle Scholar
  47. 47.
    Borowski AB, Boesteanu AC, Mueller YM, Carafides C, Topham DJ, Altman JD, et al. Memory CD8+ T cells require CD28 costimulation. J Immunol. 2007;179:6494–503.PubMedGoogle Scholar
  48. 48.
    Laderach D, Movassagh M, Johnson A, Mittler RS, Galy A. 4–1BB co-stimulation enhances human CD8(+) T cell priming by augmenting the proliferation and survival of effector CD8(+) T cells. Int Immunol. 2002;14:1155–67.CrossRefPubMedGoogle Scholar
  49. 49.
    Grewal IS, Foellmer HG, Grewal KD, Xu J, Hardardottir F, Baron JL, et al. Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis. Science. 1996;273:1864–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell. 1992;71:1065–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Ruby CE, Redmond WL, Haley D, Weinberg AD. Anti-OX40 stimulation in vivo enhances CD8+ memory T cell survival and significantly increases recall responses. Eur J Immunol. 2007;37:157–66.CrossRefPubMedGoogle Scholar
  52. 52.
    Salek-Ardakani S, Croft M. Regulation of CD4 T cell memory by OX40 (CD134). Vaccine. 2006;24:872–83.CrossRefPubMedGoogle Scholar
  53. 53.
    Maxwell JR, Weinberg A, Prell RA, Vella AT. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol. 2000;164:107–12.PubMedGoogle Scholar
  54. 54.
    Takahashi C, Mittler RS, Vella AT. Cutting edge: 4–1BB is a bona fide CD8 T cell survival signal. J Immunol. 1999;162:5037–40.PubMedGoogle Scholar
  55. 55.
    Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS. 4–1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol. 2002;169:4882–8.PubMedGoogle Scholar
  56. 56.
    Maxwell JR, Campbell JD, Kim CH, Vella AT. CD40 activation boosts T cell immunity in vivo by enhancing T cell clonal expansion and delaying peripheral T cell deletion. J Immunol. 1999;162:2024–34.PubMedGoogle Scholar
  57. 57.
    Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science. 2002;297:2060–3.CrossRefPubMedGoogle Scholar
  58. 58.
    Stuber E, Strober W, Neurath M. Blocking the CD40L-CD40 interaction in vivo specifically prevents the priming of T helper 1 cells through the inhibition of interleukin 12 secretion. J Exp Med. 1996;183:693–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Wang JC, Livingstone AM. Cutting edge: CD4+ T cell help can be essential for primary CD8+ T cell responses in vivo. J Immunol. 2003;171:6339–43.PubMedGoogle Scholar
  60. 60.
    Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science. 2003;300:337–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Moroz A, Eppolito C, Li Q, Tao J, Clegg CH, Shrikant PA. IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J Immunol. 2004;173:900–9.PubMedGoogle Scholar
  62. 62.
    Elsaesser H, Sauer K, Brooks DG. IL-21 is required to control chronic viral infection. Science. 2009;324:1569–72.CrossRefPubMedGoogle Scholar
  63. 63.
    Lund JM, Hsing L, Pham TT, Rudensky AY. Coordination of early protective immunity to viral infection by regulatory T cells. Science. 2008;320:1220–4.CrossRefPubMedGoogle Scholar
  64. 64.
    Ma A, Koka R, Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol. 2006;24:657–79.CrossRefPubMedGoogle Scholar
  65. 65.
    D’Souza WN, Lefrancois L. IL-2 is not required for the initiation of CD8 T cell cycling but sustains expansion. J Immunol. 2003;171:5727–35.PubMedGoogle Scholar
  66. 66.
    D’Souza WN, Schluns KS, Masopust D, Lefrancois L. Essential role for IL-2 in the regulation of antiviral extralymphoid CD8 T cell responses. J Immunol. 2002;168:5566–72.PubMedGoogle Scholar
  67. 67.
    Haring JS, Jing X, Bollenbacher-Reilley J, Xue HH, Leonard WJ, Harty JT. Constitutive expression of IL-7 receptor alpha does not support increased expansion or prevent contraction of antigen-specific CD4 or CD8 T cells following Listeria monocytogenes infection. J Immunol. 2008;180:2855–62.PubMedGoogle Scholar
  68. 68.
    Klonowski KD, Williams KJ, Marzo AL, Lefrancois L. Cutting edge: IL-7-independent regulation of IL-7 receptor alpha expression and memory CD8 T cell development. J Immunol. 2006;177:4247–51.PubMedGoogle Scholar
  69. 69.
    Yajima T, Yoshihara K, Nakazato K, Kumabe S, Koyasu S, Sad S, et al. IL-15 regulates CD8+ T cell contraction during primary infection. J Immunol. 2006;176:507–15.PubMedGoogle Scholar
  70. 70.
    Bradley LM, Haynes L, Swain SL. IL-7: maintaining T-cell memory and achieving homeostasis. Trends Immunol. 2005;26:172–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Ku CC, Murakami M, Sakamoto A, Kappler J, Marrack P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science. 2000;288:675–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Goldrath AW, Sivakumar PV, Glaccum M, Kennedy MK, Bevan MJ, Benoist C, et al. Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med. 2002;195:1515–22.CrossRefPubMedGoogle Scholar
  73. 73.
    Judge AD, Zhang X, Fujii H, Surh CD, Sprent J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med. 2002;196:935–46.CrossRefPubMedGoogle Scholar
  74. 74.
    Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol. 2000;1:426–32.CrossRefPubMedGoogle Scholar
  75. 75.
    Osborne LC, Dhanji S, Snow JW, Priatel JJ, Ma MC, Miners MJ, et al. Impaired CD8 T cell memory and CD4 T cell primary responses in IL-7R alpha mutant mice. J Exp Med. 2007;204:619–31.CrossRefPubMedGoogle Scholar
  76. 76.
    Carrio R, Rolle CE, Malek TR. Non-redundant role for IL-7R signaling for the survival of CD8+ memory T cells. Eur J Immunol. 2007;37:3078–88.CrossRefPubMedGoogle Scholar
  77. 77.
    Suto A, Kashiwakuma D, Kagami S, Hirose K, Watanabe N, Yokote K, et al. Development and characterization of IL-21-producing CD4+ T cells. J Exp Med. 2008;205:1369–79.CrossRefPubMedGoogle Scholar
  78. 78.
    Liu S, Lizee G, Lou Y, Liu C, Overwijk WW, Wang G, et al. IL-21 synergizes with IL-7 to augment expansion and anti-tumor function of cytotoxic T cells. Int Immunol. 2007;19:1213–21.CrossRefPubMedGoogle Scholar
  79. 79.
    Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med. 2005;201:139–48.CrossRefPubMedGoogle Scholar
  80. 80.
    Thompson JA, Curti BD, Redman BG, Bhatia S, Weber JS, Agarwala SS, et al. Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J Clin Oncol. 2008;26:2034–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Li Q, Eppolito C, Odunsi K, Shrikant PA. IL-12-programmed long-term CD8+ T cell responses require STAT4. J Immunol. 2006;177:7618–25.PubMedGoogle Scholar
  82. 82.
    Valenzuela J, Schmidt C, Mescher M. The roles of IL-12 in providing a third signal for clonal expansion of naive CD8 T cells. J Immunol. 2002;169:6842–9.PubMedGoogle Scholar
  83. 83.
    Pearce EL, Shen H. Generation of CD8 T cell memory is regulated by IL-12. J Immunol. 2007;179:2074–81.PubMedGoogle Scholar
  84. 84.
    Hamilton SE, Jameson SC. CD8(+) T cell differentiation: choosing a path through T-bet. Immunity. 2007;27:180–2.CrossRefPubMedGoogle Scholar
  85. 85.
    Ogasawara K, Hida S, Weng Y, Saiura A, Sato K, Takayanagi H, et al. Requirement of the IFN-alpha/beta-induced CXCR3 chemokine signalling for CD8+ T cell activation. Genes Cells. 2002;7:309–20.CrossRefPubMedGoogle Scholar
  86. 86.
    Hida S, Ogasawara K, Sato K, Abe M, Takayanagi H, Yokochi T, et al. CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling. Immunity. 2000;13:643–55.CrossRefPubMedGoogle Scholar
  87. 87.
    Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med. 2005;202:637–50.CrossRefPubMedGoogle Scholar
  88. 88.
    Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol. 2005;174:4465–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Protul A. Shrikant
    • 1
    Email author
  • Rajesh Rao
    • 1
  • Qingsheng Li
    • 1
  • Joshua Kesterson
    • 1
  • Cheryl Eppolito
    • 1
  • Axel Mischo
    • 1
  • Pankaj Singhal
    • 1
  1. 1.Department of ImmunologyRoswell Park Cancer InstituteBuffaloUSA

Personalised recommendations