Immunologic Research

, Volume 45, Issue 2–3, pp 239–250

Regulation of immunity at tissue sites of inflammation

  • Dorothy K. Sojka
  • Christopher A. Lazarski
  • Yu-Hui Huang
  • Irina Bromberg
  • Angela Hughson
  • Deborah J. Fowell


The acquisition and execution of CD4 effector function are tightly regulated and spatially compartmentalized. In the lymph node (LN), naïve CD4+ T cells acquire specialized functions by means of expression of distinct cytokines and acquire distinct homing properties. Therefore, both the function and subsequent localization of effector cells appears to be predetermined during differentiation in the LN. Our studies with the protozoa Leishmania major suggest that this centrally (LN) generated effector repertoire can be further edited at the infected tissue site. Cytokine production in the inflamed tissue can be modulated at a number of levels including chemokine-driven differential recruitment of effector cells, the provision of signals for effector cell function and suppression by regulatory T cells (Tregs). The concept that tissue resident pathogens may subvert the centrally generated cytokine repertoire has important therapeutic implications. Novel therapies that focus on manipulating the local infection site to encourage appropriate recruitment or activation of effectors may be particularly beneficial.


CD4 T cell Cytokine Chemokine Inflamed tissue Recruitment Regulatory T cell Leishmania major 


  1. 1.
    Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.CrossRefPubMedGoogle Scholar
  2. 2.
    Reis e Sousa C. Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol. 2004;16:21–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Jankovic D, Liu Z, Gause WC. Th1- and Th2-cell commitment during infectious disease: asymmetry in divergent pathways. Trends Immunol. 2001;22:450–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Sher A, Pearce E, Kaye P. Shaping the immune response to parasites: role of dendritic cells. Curr Opin Immunol. 2003;15:421–9.CrossRefPubMedGoogle Scholar
  5. 5.
    von Andrian UH, Mackay CR. T-cell function and migration. Two sides of the same coin. N Engl J Med. 2000;343:1020–34.CrossRefGoogle Scholar
  6. 6.
    Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989;169:59–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Fowell DJ, Locksley RM. Leishmania major infection of inbred mice: unmasking genetic determinants of infectious diseases. Bioessays. 1999;21:510–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2002;2:845–58.CrossRefPubMedGoogle Scholar
  9. 9.
    Misslitz AC, Bonhagen K, Harbecke D, Lippuner C, Kamradt T, Aebischer T. Two waves of antigen-containing dendritic cells in vivo in experimental Leishmania major infection. Eur J Immunol. 2004;34:715–25.CrossRefPubMedGoogle Scholar
  10. 10.
    Iezzi G, Frohlich A, Ernst B, Ampenberger F, Saeland S, Glaichenhaus N, et al. Lymph node resident rather than skin-derived dendritic cells initiate specific T cell responses after Leishmania major infection. J Immunol. 2006;177:1250–6.PubMedGoogle Scholar
  11. 11.
    Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity. 2005;22:19–29.CrossRefPubMedGoogle Scholar
  12. 12.
    Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY, et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity. 2003;19:47–57.CrossRefPubMedGoogle Scholar
  13. 13.
    Baldwin T, Henri S, Curtis J, O’Keeffe M, Vremec D, Shortman K, et al. Dendritic cell populations in Leishmania major-infected skin and draining lymph nodes. Infect Immun. 2004;72:1991–2001.CrossRefPubMedGoogle Scholar
  14. 14.
    Campbell DJ, Butcher EC. Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med. 2002;195:135–41.CrossRefPubMedGoogle Scholar
  15. 15.
    Sigmundsdottir H, Butcher EC. Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat Immunol. 2008;9:981–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Bromley SK, Mempel TR, Luster AD. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol. 2008;9:970–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Rosas LE, Barbi J, Lu B, Fujiwara Y, Gerard C, Sanders VM, et al. CXCR3−/− mice mount an efficient Th1 response but fail to control Leishmania major infection. Eur J Immunol. 2005;35:515–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Katzman SD, Fowell DJ. Pathogen-imposed skewing of mouse chemokine and cytokine expression at the infected tissue site. J Clin Invest. 2008;118:801–11.PubMedGoogle Scholar
  19. 19.
    Menten P, Wuyts A, Van Damme J. Monocyte chemotactic protein-3. Eur Cytokine Netw. 2001;12:554–60.PubMedGoogle Scholar
  20. 20.
    Romagnani S. Cytokines and chemoattractants in allergic inflammation. Mol Immunol. 2002;38:881–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001;291:2413–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature. 2001;410:101–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Mohrs K, Wakil AE, Killeen N, Locksley RM, Mohrs M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity. 2005;23:419–29.CrossRefPubMedGoogle Scholar
  24. 24.
    Harris NL, Watt V, Ronchese F, Le Gros G. Differential T cell function and fate in lymph node and nonlymphoid tissues. J Exp Med. 2002;195:317–26.CrossRefPubMedGoogle Scholar
  25. 25.
    Morales-Tirado V, Johannson S, Hanson E, Howell A, Zhang J, Siminovitch KA, et al. Cutting edge: selective requirement for the Wiskott-Aldrich syndrome protein in cytokine, but not chemokine, secretion by CD4+ T cells. J Immunol. 2004;173:726–30.PubMedGoogle Scholar
  26. 26.
    Au-Yeung BB, Katzman SD, Fowell DJ. Cutting edge: Itk-dependent signals required for CD4+ T cells to exert, but not gain, Th2 effector function. J Immunol. 2006;176:3895–9.PubMedGoogle Scholar
  27. 27.
    Kosaka Y, Felices M, Berg LJ. Itk and Th2 responses: action but no reaction. Trends Immunol. 2006;27:453–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Dienz O, Eaton SM, Krahl TJ, Diehl S, Charland C, Dodge J, et al. Accumulation of NFAT mediates IL-2 expression in memory, but not naïve, CD4+ T cells. Proc Natl Acad Sci USA. 2007;104:7175–80.CrossRefPubMedGoogle Scholar
  29. 29.
    Park AY, Hondowicz BD, Scott P. IL-12 is required to maintain a Th1 response during Leishmania major infection. J Immunol. 2000;165:896–902.PubMedGoogle Scholar
  30. 30.
    Stobie L, Gurunathan S, Prussin C, Sacks DL, Glaichenhaus N, Wu CY, et al. The role of antigen and IL-12 in sustaining Th1 memory cells in vivo: IL-12 is required to maintain memory/effector Th1 cells sufficient to mediate protection to an infectious parasite challenge. Proc Natl Acad Sci USA. 2000;97:8427–32.CrossRefPubMedGoogle Scholar
  31. 31.
    Yap G, Pesin M, Sher A. Cutting edge: IL-12 is required for the maintenance of IFN-gamma production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J Immunol. 2000;165:628–31.PubMedGoogle Scholar
  32. 32.
    Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science. 2001;292:1907–10.CrossRefPubMedGoogle Scholar
  33. 33.
    Wassink L, Vieira PL, Smits HH, Kingsbury GA, Coyle AJ, Kapsenberg ML, et al. ICOS expression by activated human Th cells is enhanced by IL-12 and IL-23: increased ICOS expression enhances the effector function of both Th1 and Th2 cells. J Immunol. 2004;173:1779–86.PubMedGoogle Scholar
  34. 34.
    Pakpour N, Zaph C, Scott P. The central memory CD4+ T cell population generated during Leishmania major infection requires IL-12 to produce IFN-gamma. J Immunol. 2008;180:8299–305.PubMedGoogle Scholar
  35. 35.
    Zaph C, Uzonna J, Beverley SM, Scott P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med. 2004;10:1104–10.CrossRefPubMedGoogle Scholar
  36. 36.
    Nakayama T, Yamashita M. Initiation and maintenance of Th2 cell identity. Curr Opin Immunol. 2008;20:265–71.CrossRefPubMedGoogle Scholar
  37. 37.
    He R, Oyoshi MK, Garibyan L, Kumar L, Ziegler SF, Geha RS. TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. Proc Natl Acad Sci USA. 2008;105:11875–80.CrossRefPubMedGoogle Scholar
  38. 38.
    Fang L, Adkins B, Deyev V, Podack ER. Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation. J Exp Med. 2008;205:1037–48.CrossRefPubMedGoogle Scholar
  39. 39.
    Wurtz O, Bajenoff M, Guerder S. IL-4-mediated inhibition of IFN-gamma production by CD4+ T cells proceeds by several developmentally regulated mechanisms. Int Immunol. 2004;16:501–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Huang H, Paul WE. Impaired interleukin 4 signaling in T helper type 1 cells. J Exp Med. 1998;187:1305–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Deng W, Ohmori Y, Hamilton TA. Mechanisms of IL-4-mediated suppression of IP-10 gene expression in murine macrophages. J Immunol. 1994;153:2130–6.PubMedGoogle Scholar
  42. 42.
    Rakasz E, Blum AM, Metwali A, Elliott DE, Li J, Ballas ZK, et al. Localization and regulation of IFN-gamma production within the granulomas of murine schistosomiasis in IL-4-deficient and control mice. J Immunol. 1998;160:4994–9.PubMedGoogle Scholar
  43. 43.
    Sojka DK, Huang YH, Fowell DJ. Mechanisms of regulatory T-cell suppression—a diverse arsenal for a moving target. Immunology. 2008;124:13–22.CrossRefPubMedGoogle Scholar
  44. 44.
    Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9:239–44.CrossRefPubMedGoogle Scholar
  45. 45.
    Lehmann J, Huehn J, de la Rosa M, Maszyna F, Kretschmer U, Krenn V, et al. Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25- regulatory T cells. Proc Natl Acad Sci USA. 2002;99:13031–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Siegmund K, Feuerer M, Siewert C, Ghani S, Haubold U, Dankof A, et al. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood. 2005;106:3097–104.CrossRefPubMedGoogle Scholar
  47. 47.
    Sojka DK, Hughson A, Sukiennicki TL, Fowell DJ. Early kinetic window of target T cell susceptibility to CD25+ regulatory T cell activity. J Immunol. 2005;175:7274–80.PubMedGoogle Scholar
  48. 48.
    Sukiennicki TL, Fowell DJ. Distinct molecular program imposed on CD4+ T cell targets by CD4+CD25+ regulatory T cells. J Immunol. 2006;177:6952–61.PubMedGoogle Scholar
  49. 49.
    Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA. 2005;102:419–24.CrossRefPubMedGoogle Scholar
  50. 50.
    Mempel TR, Pittet MJ, Khazaie K, Weninger W, Weissleder R, von Boehmer H, et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity. 2006;25:129–41.CrossRefPubMedGoogle Scholar
  51. 51.
    DiPaolo RJ, Glass DD, Bijwaard KE, Shevach EM. CD4+CD25+ T cells prevent the development of organ-specific autoimmune disease by inhibiting the differentiation of autoreactive effector T cells. J Immunol. 2005;175:7135–42.PubMedGoogle Scholar
  52. 52.
    Sarween N, Chodos A, Raykundalia C, Khan M, Abbas AK, Walker LS. CD4+CD25+ cells controlling a pathogenic CD4 response inhibit cytokine differentiation, CXCR-3 expression, and tissue invasion. J Immunol. 2004;173:2942–51.PubMedGoogle Scholar
  53. 53.
    Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA, Sider JR, et al. Helper T cell differentiation is controlled by the cell cycle. Immunity. 1998;9:229–37.CrossRefPubMedGoogle Scholar
  54. 54.
    Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+ CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 2002;420:502–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Yurchenko E, Tritt M, Hay V, Shevach EM, Belkaid Y, Piccirillo CA. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med. 2006;203:2451–60.CrossRefPubMedGoogle Scholar
  56. 56.
    Suffia I, Reckling SK, Salay G, Belkaid Y. A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol. 2005;174:5444–55.PubMedGoogle Scholar
  57. 57.
    Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, Wynn TA, et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med. 2001;194:1497–506.CrossRefPubMedGoogle Scholar
  58. 58.
    Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, Sacks D. Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+ CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med. 2007;204:805–17.CrossRefPubMedGoogle Scholar
  59. 59.
    Anderson CF, Oukka M, Kuchroo VJ, Sacks D. CD4(+) CD25(−) Foxp3(−) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med. 2007;204:285–97.CrossRefPubMedGoogle Scholar
  60. 60.
    Nagase H, Jones KM, Anderson CF, Noben-Trauth N. Despite increased CD4+ Foxp3+ cells within the infection site, BALB/c IL-4 receptor-deficient mice reveal CD4+Foxp3-negative T cells as a source of IL-10 in Leishmania major susceptibility. J Immunol. 2007;179:2435–44.PubMedGoogle Scholar
  61. 61.
    Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299:1033–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB, Zhu Q, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity. 2008;29:637–49.CrossRefPubMedGoogle Scholar
  63. 63.
    Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med. 2007;13:423–31.CrossRefPubMedGoogle Scholar
  64. 64.
    Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol. 2007;178:2579–88.PubMedGoogle Scholar
  65. 65.
    Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 2004;200:277–85.CrossRefPubMedGoogle Scholar
  66. 66.
    Lazarski CA, Hughson A, Sojka DK, Fowell DJ. Regulating Treg cells at sites of inflammation. Immunity. 2008;29:511. author reply 512.Google Scholar
  67. 67.
    Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity. 2008;28:687–97.CrossRefPubMedGoogle Scholar
  68. 68.
    Gavin MA, Torgerson TR, Houston E, DeRoos P, Ho WY, Stray-Pedersen A, et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA. 2006;103:6659–64.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dorothy K. Sojka
    • 1
  • Christopher A. Lazarski
    • 1
  • Yu-Hui Huang
    • 1
  • Irina Bromberg
    • 1
  • Angela Hughson
    • 1
  • Deborah J. Fowell
    • 1
  1. 1.David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and ImmunologyUniversity of RochesterRochesterUSA

Personalised recommendations