Immunologic Research

, Volume 45, Issue 2–3, pp 185–194 | Cite as

Omental immune aggregates and tumor metastasis within the peritoneal cavity

  • Elizabeth W. Sorensen
  • Scott A. Gerber
  • Abigail L. Sedlacek
  • Viktoriya Y. Rybalko
  • Winnie M. Chan
  • Edith M. Lord


The omentum, an important peritoneal tissue, is studded with a high number of immune aggregates, or “milky spots,” the number, function, and phenotype of which is largely unknown. We have analyzed the immune composition on the normal omentum and also have shown that both free immune cells and tumor cells in the peritoneal fluid bind preferentially to these immune aggregates. This binding may be mediated by the network of collagen I fibers, which overlay these areas. In addition, we have shown that not only do omental vessels express vascular endothelial growth factor receptor 3 (VEGFR3), a receptor that is only found on angiogenic blood vessels, but that tumor cells co-localize with these vessels, possibly increasing the ability of tumor to induce neovascularization and therefore thrive.


Omentum Tumor Peritoneal cavity Metastasis Angiogenesis 


  1. 1.
    Society AC: Cancer Facts & Figs 2008. Available at:
  2. 2.
    Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, et al. Focus on epithelial ovarian cancer. Cancer Cell. 2004;5:19–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Krist LF, Eestermans IL, Steenbergen JJ, Hoefsmit EC, Cuesta MA, Meyer S, et al. Cellular composition of milky spots in the human greater omentum: an immunochemical and ultrastructural study. Anat Rec. 1995;241:163–74.CrossRefPubMedGoogle Scholar
  4. 4.
    Gerber SA, Rybalko VY, Bigelow CE, Lugade AA, Foster TH, Frelinger JG, et al. Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol. 2006;169:1739–52.CrossRefPubMedGoogle Scholar
  5. 5.
    Ranvier H. Du developpement t de l’accroissement des vaisseaux sanguins. Arch Physiol. 1874;1:429.Google Scholar
  6. 6.
    Shimotsuma M, Shields JW, Simpson-Morgan MW, Sakuyama A, Shirasu M, Hagiwara A, et al. Morpho-physiological function and role of omental milky spots as omentum-associated lymphoid tissue (OALT) in the peritoneal cavity. Lymphology. 1993;26:90–101.PubMedGoogle Scholar
  7. 7.
    Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis. 2000;21:585–91.CrossRefPubMedGoogle Scholar
  8. 8.
    Gerber SA, Moran JP, Frelinger JG, Frelinger JA, Fenton BM, Lord EM. Mechanism of IL-12 mediated alterations in tumour blood vessel morphology: analysis using whole-tissue mounts. Br J Cancer. 2003;88:1453–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Koten JW, den Otter W. Are omental milky spots an intestinal thymus? Lancet. 1991;338:1189–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Murakami M, Honjo T. B-1 cells and autoimmunity. Ann NY Acad Sci. 1995;764:402–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Kearney JF, Bartels J, Hamilton AM, Lehuen A, Solvason N, Vakil M. Development and function of the early B cell repertoire. Int Rev Immunol. 1992;8:247–57.CrossRefPubMedGoogle Scholar
  12. 12.
    Resendizz-Albor AA, Esquivel R, Lopez-Revilla R, Verdin L, Moreno-Fierros L. Striding phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice. Life Sci. 2005;76:2783–803.CrossRefGoogle Scholar
  13. 13.
    Seibold F, Seibold-Schmid B, Cong Y, Shu FY, McCabe R, Weaver C, et al. Regional differences in L-selectin expression in murine intestinal lymphocytes. Gastroenterology. 1998;114:965–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang L, Jackson WC, Steinbach PA, Tsien RY. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA. 2004;101:16745–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Beelen RH. The greater omentum: physiology and immunological concepts. Neth J Surg. 1991;43:145–9.PubMedGoogle Scholar
  16. 16.
    Freedman RS, Tomasovic B, Templin S, Atkinson EN, Kudelka A, Edwards CL, et al. Large-scale expansion in interleukin-2 of tumor-infiltrating lymphocytes from patients with ovarian carcinoma for adoptive immunotherapy. J Immunol Methods. 1994;167:145–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Ioannides CG, Platsoucas CD, Rashed S, Wharton JT, Edwards CL, Freedman RS. Tumor cytolysis by lymphocytes infiltrating ovarian malignant ascites. Cancer Res. 1991;51:4257–65.PubMedGoogle Scholar
  18. 18.
    Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol. 2000;156:1499–504.PubMedGoogle Scholar
  19. 19.
    Partanen TA, Alitalo K, Miettinen M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer. 1999;86:2406–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Clarijs R, Schalkwijk L, Hofmann UB, Ruiter DJ, de Waal RM. Induction of vascular endothelial growth factor receptor-3 expression on tumor microvasculature as a new progression marker in human cutaneous melanoma. Cancer Res. 2002;62:7059–65.PubMedGoogle Scholar
  21. 21.
    Longatto Filho A, Martins A, Costa SM, Schmitt FC. VEGFR-3 expression in breast cancer tissue is not restricted to lymphatic vessels. Pathol Res Pract. 2005;201:93–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elizabeth W. Sorensen
    • 1
  • Scott A. Gerber
    • 1
  • Abigail L. Sedlacek
    • 1
  • Viktoriya Y. Rybalko
    • 1
  • Winnie M. Chan
    • 1
  • Edith M. Lord
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations