Immunologic Research

, 45:173

T helper cytokine patterns: defined subsets, random expression, and external modulation

  • Tim R. Mosmann
  • James J. Kobie
  • F. Eun-Hyung Lee
  • Sally A. Quataert
Article

Abstract

Although T cell effector subsets, defined by cytokine patterns, have been recognized for more than 20 years, the functional cytokine expression patterns in vivo are still in considerable doubt, particularly for human T cells. At least three new subsets have been recently identified, but the committed cytokine pattern of a T cell (e.g., Th1 cells produce IL-2, interferon-gamma, and lymphotoxin) may differ from the expression pattern of one cell on one occasion, which may be a subset of its full potential. Recent advances in flow cytometry allowed detailed cytokine patterns of antigen-stimulated cells to be identified directly ex vivo. These patterns are clearly more diverse than the major subsets identified as committed phenotypes. Additional contributions to diversity may include new committed subsets, random expression of only part of the committed pattern, and modification of the expression patterns by cytokines and other mediators.

Keywords

T cells Cytokines Th1 Th2 Commitment 

References

  1. 1.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–57.PubMedGoogle Scholar
  2. 2.
    Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987;166:1229–44.CrossRefPubMedGoogle Scholar
  3. 3.
    Wierenga EA, Snoek M, Jansen HM, Bos JD, van Lier RA, Kapsenberg ML. Human atopen-specific types 1 and 2 T helper cell clones. J Immunol. 1991;147:2942–9.PubMedGoogle Scholar
  4. 4.
    Del Prete GF, De Carli M, Mastromauro C, Biagiotti R, Macchia D, Falagiani P, et al. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest. 1991;88:346–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383:787–93.CrossRefPubMedGoogle Scholar
  6. 6.
    Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol. 2002;2:933–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol. 2003;21:713–58.CrossRefPubMedGoogle Scholar
  8. 8.
    Mowen KA, Glimcher LH. Signaling pathways in Th2 development. Immunol Rev. 2004;202:203–22.CrossRefPubMedGoogle Scholar
  9. 9.
    Smits HH, van Rietschoten JG, Hilkens CM, Sayilir R, Stiekema F, Kapsenberg ML, et al. IL-12-induced reversal of human Th2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. Eur J Immunol. 2001;31:1055–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature. 2008;454:350–2.CrossRefPubMedGoogle Scholar
  11. 11.
    Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 2008;9:641–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8:942–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89.CrossRefPubMedGoogle Scholar
  14. 14.
    Sad S, Mosmann TR. Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J Immunol. 1994;153:3514–22.PubMedGoogle Scholar
  15. 15.
    Akai PS, Mosmann TR. Primed and replicating but uncommitted T helper precursor cells show kinetics of differentiation and commitment similar to those of naive T helper cells. Microbes Infect. 1999;1:51–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang X, Mosmann T. In vivo priming of CD4 T cells that produce interleukin (IL)-2 but not IL-4 or interferon (IFN)-gamma, and can subsequently differentiate into IL-4- or IFN-gamma-secreting cells. J Exp Med. 2001;194:1069–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol. 2003;4:225–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Marzo AL, Klonowski KD, Le Bon A, Borrow P, Tough DF, Lefrancois L. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat Immunol. 2005;6:793–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Zaph C, Uzonna J, Beverley SM, Scott P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med. 2004;10:1104–10.CrossRefPubMedGoogle Scholar
  21. 21.
    Geginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J Exp Med. 2001;194:1711–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Fearon DT, Manders P, Wagner SD. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science. 2001;293:248–50.CrossRefPubMedGoogle Scholar
  23. 23.
    Divekar AA, Zaiss DM, Lee FE, Liu D, Topham DJ, Sijts AJ, et al. Protein vaccines induce uncommitted IL-2-secreting human and mouse CD4 T cells, whereas infections induce more IFN-gamma-secreting cells. J Immunol. 2006;176:1465–73.PubMedGoogle Scholar
  24. 24.
    Yang L, Mosmann T. Synthesis of several chemokines but few cytokines by primed uncommitted precursor CD4 T cells suggests that these cells recruit other immune cells without exerting direct effector functions. Eur J Immunol. 2004;34:1617–26.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang L, Kobie JJ, Mosmann TR. CD73 and Ly-6A/E distinguish in vivo primed but uncommitted mouse CD4 T cells from type 1 or type 2 effector cells. J Immunol. 2005;175:6458–64.PubMedGoogle Scholar
  26. 26.
    Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol. 2006;177:6780–6.PubMedGoogle Scholar
  27. 27.
    Bucy RP, Panoskaltsis-Mortari A, Huang GQ, Li J, Karr L, Ross M, et al. Heterogeneity of single cell cytokine gene expression in clonal T cell populations. J Exp Med. 1994;180:1251–62.CrossRefPubMedGoogle Scholar
  28. 28.
    Bucy RP, Karr L, Huang GQ, Li J, Carter D, Honjo K, et al. Single cell analysis of cytokine gene coexpression during CD4+ T-cell phenotype development. Proc Natl Acad Sci USA. 1995;92:7565–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Kelso A, Groves P, Ramm L, Doyle AG. Single-cell analysis by RT-PCR reveals differential expression of multiple type 1 and 2 cytokine genes among cells within polarized CD4+ T cell populations. Int Immunol. 1999;11:617–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Assenmacher M, Schmitz J, Radbruch A. Flow cytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukin-10 in interferon-gamma and in interleukin-4-expressing cells. Eur J Immunol. 1994;24:1097–101.CrossRefPubMedGoogle Scholar
  31. 31.
    Karulin AY, Hesse MD, Tary-Lehmann M, Lehmann PV. Single-cytokine-producing CD4 memory cells predominate in type 1 and type 2 immunity. J Immunol. 2000;164:1862–72.PubMedGoogle Scholar
  32. 32.
    Jung T, Schauer U, Rieger C, Wagner K, Einsle K, Neumann C, et al. Interleukin-4 and interleukin-5 are rarely co-expressed by human T cells. Eur J Immunol. 1995;25:2413–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Kelso A, Groves P, Troutt AB, Francis K. Evidence for the stochastic acquisition of cytokine profile by CD4+ T cells activated in a T helper type 2-like response in vivo. Eur J Immunol. 1995;25:1168–75.CrossRefPubMedGoogle Scholar
  34. 34.
    Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med. 2007;13:843–50.CrossRefPubMedGoogle Scholar
  35. 35.
    Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, et al. HIV non-progressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107:4781–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Gazagne A, Claret E, Wijdenes J, Yssel H, Bousquet F, Levy E, et al. A Fluorospot assay to detect single T lymphocytes simultaneously producing multiple cytokines. J Immunol Methods. 2003;283:91–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Lee FE, Walsh EE, Falsey AR, Liu N, Liu D, Divekar A, et al. The balance between influenza- and RSV-specific CD4 T cells secreting IL-10 or IFNgamma in young and healthy-elderly subjects. Mech Ageing Dev. 2005;126:1223–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Rebhahn JA, Bishop C, Divekar AA, Jiminez-Garcia K, Kobie JJ, Lee FE, et al. Automated analysis of two- and three-color fluorescent Elispot (Fluorospot) assays for cytokine secretion. Comput Methods Programs Biomed. 2008;92:54–65.CrossRefPubMedGoogle Scholar
  39. 39.
    Richter M, Ray SJ, Chapman TJ, Austin SJ, Rebhahn J, Mosmann TR, et al. Collagen distribution and expression of collagen-binding alpha1beta1 (VLA-1) and alpha2beta1 (VLA-2) integrins on CD4 and CD8 T cells during influenza infection. J Immunol. 2007;178:4506–16.PubMedGoogle Scholar
  40. 40.
    Manz R, Assenmacher M, Pfluger E, Miltenyi S, Radbruch A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci USA. 1995;92:1921–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Lamoreaux L, Roederer M, Koup R. Intracellular cytokine optimization and standard operating procedure. Nat Protoc. 2006;1:1507–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Ott PA, Berner BR, Herzog BA, Guerkov R, Yonkers NL, Durinovic-Bello I, et al. CD28 co-stimulation enhances the sensitivity of the ELISPOT assay for detection of antigen-specific memory effector CD4 and CD8 cell populations in human diseases. J Immunol Methods. 2004;285:223–35.CrossRefPubMedGoogle Scholar
  43. 43.
    Jennes W, Kestens L, Nixon DF, Shacklett BL. Enhanced ELISPOT detection of antigen-specific T cell responses from cryopreserved specimens with addition of both IL-7 and IL-15-the Amplispot assay. J Immunol Methods. 2002;270:99–108.PubMedGoogle Scholar
  44. 44.
    Freeman MM, Ziegler HK. Simultaneous Th1-type cytokine expression is a signature of peritoneal CD4+ lymphocytes responding to infection with Listeria monocytogenes. J Immunol. 2005;175:394–403.PubMedGoogle Scholar
  45. 45.
    Itoh Y, Germain RN. Single cell analysis reveals regulated hierarchical T cell antigen receptor signaling thresholds and intraclonal heterogeneity for individual cytokine responses of CD4+ T cells. J Exp Med. 1997;186:757–66.CrossRefPubMedGoogle Scholar
  46. 46.
    Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;19(12):1341–6.CrossRefGoogle Scholar
  47. 47.
    Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989;170:2081–95.CrossRefPubMedGoogle Scholar
  48. 48.
    Quast S, Zhang W, Shive C, Kovalovski D, Ott PA, Herzog BA, et al. IL-2 absorption affects IFN-gamma and IL-5, but not IL-4 producing memory T cells in double color cytokine ELISPOT assays. Cell Immunol. 2005;237:28–36.CrossRefPubMedGoogle Scholar
  49. 49.
    Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol. 1991;146:3444–51.PubMedGoogle Scholar
  50. 50.
    Zaiss DM, Yang L, Shah PR, Kobie JJ, Urban JF, Mosmann TR. Amphiregulin, a TH2 cytokine enhancing resistance to nematodes. Science. 2006;314:1746.CrossRefPubMedGoogle Scholar
  51. 51.
    Chang HC, Zhang S, Thieu VT, Slee RB, Bruns HA, Laribee RN, et al. PU.1 expression delineates heterogeneity in primary Th2 cells. Immunity. 2005;22:693–703.CrossRefPubMedGoogle Scholar
  52. 52.
    Hawkins ED, Turner ML, Dowling MR, van Gend C, Hodgkin PD. A model of immune regulation as a consequence of randomized lymphocyte division and death times. Proc Natl Acad Sci USA. 2007;104:5032–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993;260:547–9. see comments.CrossRefPubMedGoogle Scholar
  54. 54.
    Maggi E, Parronchi P, Manetti R, Simonelli C, Piccinni MP, Rugiu FS, et al. Reciprocal regulatory effects of IFN-gamma and IL-4 on the in vitro development of human Th1 and Th2 clones. J Immunol. 1992;148:2142–7.PubMedGoogle Scholar
  55. 55.
    Swain SL, Huston G, Tonkonogy S, Weinberg A. Transforming growth factor-beta and IL-4 cause helper T cell precursors to develop into distinct effector helper cells that differ in lymphokine secretion pattern and cell surface phenotype. J Immunol. 1991;147:2991–3000.PubMedGoogle Scholar
  56. 56.
    Manetti R, Parronchi P, Giudizi MG, Piccinni MP, Maggi E, Trinchieri G, et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med. 1993;177:1199–204.CrossRefPubMedGoogle Scholar
  57. 57.
    Paliard X, l Malefijt R, Yssel H, Blanchard D, Chretien I, Abrams J, et al. Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4+ and CD8+ T cell clones. J Immunol. 1988;141:849–55.PubMedGoogle Scholar
  58. 58.
    Miner KT, Croft M. Generation, persistence, and modulation of Th0 effector cells: role of autocrine IL-4 and IFN-gamma. J Immunol. 1998;160:5280–7.PubMedGoogle Scholar
  59. 59.
    Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389:737–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007;317:256–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tim R. Mosmann
    • 1
  • James J. Kobie
    • 1
  • F. Eun-Hyung Lee
    • 1
  • Sally A. Quataert
    • 1
  1. 1.David H. Smith Center for Vaccine Biology and ImmunologyUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations