Immunologic Research

, Volume 45, Issue 2–3, pp 100–113 | Cite as

The emerging field of osteoimmunology

Article

Abstract

Recent studies have elucidated unanticipated connections between the immune and skeletal systems, and this relationship has led to the development of a new field known as osteoimmunology. The goal of research in this field is to: (1) further understand how the bone microenvironment influences immune cell ontogeny and subsequent effector functions, and (2) translate basic science findings in bone biology to clinical applications for autoimmune diseases that target the skeleton such as rheumatoid arthritis (RA). In this review, we will examine the recent findings of the interplay between the immune and skeletal systems. This discussion will focus on the cells and signaling pathways in osteoimmune interactions and how innate and adaptive immune effector cells as well as cytokines and chemokines play a role in the maintenance and dysregulation of skeletal-immune homeostasis. We will also discuss how immunomodulatory biologic drugs, which specifically target these cells and effector molecules, have transformed the treatment of autoimmune mediated inflammatory diseases (IMIDs) and metabolic bone diseases such as osteoporosis.

Keywords

Osteoimmunology Receptor-activator of nuclear factor kappa B (RANK) RANK-ligand Osteoprotegerin (OPG) Arthritis Osteoporosis 

References

  1. 1.
    Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol. 2007;170:427–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000;289:1508–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Boyle WJ, Simonet WS. Lacey DL: osteoclast differentiation and activation. Nature. 2003;423:337–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest. 2005;115:1571–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Lorenzo J, Choi Y. Osteoimmunology. Immunol Rev. 2005;208:5–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol. 2006;24:33–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7:292–304.CrossRefPubMedGoogle Scholar
  8. 8.
    Rho J, Takami M, Choi Y. Osteoimmunology: interactions of the immune and skeletal systems. Mol Cells. 2004;17:1–9.PubMedGoogle Scholar
  9. 9.
    Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev. 2000;21:393–411.CrossRefPubMedGoogle Scholar
  10. 10.
    Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM, et al. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest. 2001;107:277–86.CrossRefPubMedGoogle Scholar
  12. 12.
    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Miyamoto T, Ohneda O, Arai F, Iwamoto K, Okada S, Takagi K, et al. Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood. 2001;98:2544–54.CrossRefPubMedGoogle Scholar
  14. 14.
    Li P, Schwarz EM, O’Keefe RJ, Ma L, Looney RJ, Ritchlin CT, et al. Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11b high osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum. 2004;50:265–76.CrossRefPubMedGoogle Scholar
  15. 15.
    Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest. 2003;111:821–31.PubMedGoogle Scholar
  16. 16.
    Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol. 2007;82:244–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Kawanaka N, Yamamura M, Aita T, Morita Y, Okamoto A, Kawashima M, et al. CD14+, CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum. 2002;46:2578–86.CrossRefPubMedGoogle Scholar
  19. 19.
    Wijngaarden S, van Roon JA, Bijlsma JW, van de Winkel JG, Lafeber FP. Fcgamma receptor expression levels on monocytes are elevated in rheumatoid arthritis patients with high erythrocyte sedimentation rate who do not use anti-rheumatic drugs. Rheumatology (Oxford). 2003;42:681–8.CrossRefGoogle Scholar
  20. 20.
    Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007;81:584–92.CrossRefPubMedGoogle Scholar
  21. 21.
    Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-fms and receptor activator of nuclear factor {kappa}B (RANK) receptors. J Exp Med. 1999;190:1741–54.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim HH, Lee DE, Shin JN, Lee YS, Jeon YM, Chung CH, et al. Receptor activator of NF-kappaB recruits multiple TRAF family adaptors and activates c-jun N-terminal kinase. FEBS Lett. 1999;443:297–302.CrossRefPubMedGoogle Scholar
  23. 23.
    Armstrong AP, Tometsko ME, Glaccum M, Sutherland CL, Cosman D, Dougall WC. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem. 2002;277:44347–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Naito A, Yoshida H, Nishioka E, Satoh M, Azuma S, Yamamoto T, et al. TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA. 2002;99:8766–71.PubMedGoogle Scholar
  25. 25.
    Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13:1015–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S, et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 2001;20:1271–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature. 2002;418:443–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-src. Mol Cell. 1999;4:1041–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med. 1997;186:2075–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.CrossRefPubMedGoogle Scholar
  32. 32.
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.CrossRefPubMedGoogle Scholar
  33. 33.
    Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998;95:3597–602.CrossRefPubMedGoogle Scholar
  34. 34.
    Takeshita S, Kaji K, Kudo A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res. 2000;15:1477–88.CrossRefPubMedGoogle Scholar
  35. 35.
    Chen EH, Grote E, Mohler W, Vignery A. Cell-cell fusion. FEBS Lett. 2007;581:2181–93.CrossRefPubMedGoogle Scholar
  36. 36.
    Staege H, Brauchlin A, Schoedon G, Schaffner A. Two novel genes FIND and LIND differentially expressed in deactivated and listeria-infected human macrophages. Immunogenetics. 2001;53:105–13.CrossRefPubMedGoogle Scholar
  37. 37.
    Hartgers FC, Vissers JL, Looman MW, van Zoelen C, Huffine C, Figdor CG, et al. DC-STAMP, a novel multimembrane-spanning molecule preferentially expressed by dendritic cells. Eur J Immunol. 2000;30:3585–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005;202:345–51.CrossRefPubMedGoogle Scholar
  39. 39.
    Yagi M, Miyamoto T, Toyama Y, Suda T. Role of DC-STAMP in cellular fusion of osteoclasts and macrophage giant cells. J Bone Miner Metab. 2006;24:355–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Vignery A. Macrophage fusion: the making of osteoclasts and giant cells. J Exp Med. 2005;202:337–40.CrossRefPubMedGoogle Scholar
  41. 41.
    Sawatani Y, Miyamoto T, Nagai S, Maruya M, Imai J, Miyamoto K, et al. The role of DC-STAMP in maintenance of immune tolerance through regulation of dendritic cell function. Int Immunol. 2008;20:1259–68.CrossRefPubMedGoogle Scholar
  42. 42.
    Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med. 2004;200:941–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Miyamoto T. The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity. Mod Rheumatol. 2006;16:341–2.CrossRefPubMedGoogle Scholar
  44. 44.
    Jones DH, Kong YY, Penninger JM. Role of RANKL and RANK in bone loss and arthritis. Ann Rheum Dis. 2002;61(Suppl 2):ii32–9.PubMedGoogle Scholar
  45. 45.
    Moreno JL, Kaczmarek M, Keegan AD, Tondravi M. IL-4 suppresses osteoclast development and mature osteoclast function by a STAT6-dependent mechanism: irreversible inhibition of the differentiation program activated by RANKL. Blood. 2003;102:1078–86.CrossRefPubMedGoogle Scholar
  46. 46.
    Rivollier A, Mazzorana M, Tebib J, Piperno M, Aitsiselmi T, Rabourdin-Combe C, et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood. 2004;104:4029–37.CrossRefPubMedGoogle Scholar
  47. 47.
    Li P, Schwarz EM. The TNF-alpha transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol. 2003;25:19–33.CrossRefPubMedGoogle Scholar
  48. 48.
    Abu-Amer Y, Ross FP, McHugh KP, Livolsi A, Peyron JF, Teitelbaum SL. Tumor necrosis factor-alpha activation of nuclear transcription factor-kappaB in marrow macrophages is mediated by c-src tyrosine phosphorylation of ikappa balpha. J Biol Chem. 1998;273:29417–23.CrossRefPubMedGoogle Scholar
  49. 49.
    Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991;10:4025–31.PubMedGoogle Scholar
  50. 50.
    Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf–1 is a master regulator of joint remodeling. Nat Med. 2007;13:156–63.CrossRefPubMedGoogle Scholar
  51. 51.
    Wong BR, Josien R, Choi Y. TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J Leukoc Biol. 1999;65:715–24.PubMedGoogle Scholar
  52. 52.
    Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Abu-Amer Y. IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-kappaB. J Clin Invest. 2001;107:1375–85.CrossRefPubMedGoogle Scholar
  54. 54.
    Plows D, Kontogeorgos G, Kollias G. Mice lacking mature T and B lymphocytes develop arthritic lesions after immunization with type II collagen. J Immunol. 1999;162:1018–23.PubMedGoogle Scholar
  55. 55.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.CrossRefPubMedGoogle Scholar
  56. 56.
    Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol. 2008;8:337–48.CrossRefPubMedGoogle Scholar
  57. 57.
    Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)–17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 2008;9:641–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28:454–67.CrossRefPubMedGoogle Scholar
  59. 59.
    Paradowska A, Masliniski W, Grzybowska-Kowalczyk A, Lacki J. The function of interleukin 17 in the pathogenesis of rheumatoid arthritis. Arch Immunol Ther Exp (Warsz). 2007;55:329–34.CrossRefGoogle Scholar
  60. 60.
    Lubberts E. The role of IL-17 and family members in the pathogenesis of arthritis. Curr Opin Investig Drugs. 2003;4:572–7.PubMedGoogle Scholar
  61. 61.
    Bush KA, Farmer KM, Walker JS, Kirkham BW. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 fc fusion protein. Arthritis Rheum. 2002;46:802–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA, et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 2004;50:650–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 1999;42:963–70.CrossRefPubMedGoogle Scholar
  64. 64.
    Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103:1345–52.CrossRefPubMedGoogle Scholar
  65. 65.
    Shahrara S, Huang Q, Mandelin AM, II, Pope RM. TH–17 cells in rheumatoid arthritis. Arthritis Res Ther. 2008;10:R93.CrossRefPubMedGoogle Scholar
  66. 66.
    Steiner G, Smolen J. Autoantibodies in rheumatoid arthritis and their clinical significance. Arthritis Res. 2002;4(Suppl 2):S1–5.CrossRefPubMedGoogle Scholar
  67. 67.
    Matthews R. Autoimmune diseases: the B cell slayer. Science. 2007;318:1232–3.CrossRefPubMedGoogle Scholar
  68. 68.
    Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM, et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol. 2001;167:1072–80.PubMedGoogle Scholar
  69. 69.
    Takemura S, Klimiuk PA, Braun A, Goronzy JJ, Weyand CM. T cell activation in rheumatoid synovium is B cell dependent. J Immunol. 2001;167:4710–8.PubMedGoogle Scholar
  70. 70.
    Duddy ME, Alter A, Bar-Or A. Distinct profiles of human B cell effector cytokines: a role in immune regulation? J Immunol. 2004;172:3422–7.PubMedGoogle Scholar
  71. 71.
    Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109:3839–48.CrossRefPubMedGoogle Scholar
  72. 72.
    Gortz B, Hayer S, Redlich K, Zwerina J, Tohidast-Akrad M, Tuerk B, et al. Arthritis induces lymphocytic bone marrow inflammation and endosteal bone formation. J Bone Miner Res. 2004;19:990–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Mease P. Psoriatic arthritis update. Bull NYU Hosp Jt Dis. 2006;64:25–31.PubMedGoogle Scholar
  74. 74.
    van der Heijde D, Kavanaugh A, Gladman DD, Antoni C, Krueger GG, Guzzo C, et al. Infliximab inhibits progression of radiographic damage in patients with active psoriatic arthritis through one year of treatment: results from the induction and maintenance psoriatic arthritis clinical trial 2. Arthritis Rheum. 2007;56:2698–707.CrossRefPubMedGoogle Scholar
  75. 75.
    Mease PJ, Gladman DD, Ritchlin CT, Ruderman EM, Steinfeld SD, Choy EH, et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2005;52:3279–89.CrossRefPubMedGoogle Scholar
  76. 76.
    Edwards JCW, Szeczepanski L, Szechinski J. Efficacy and safety of rituximab, a B cell targeted chimeric antibody: a randomized placebo-controlled trial in rheumatoid arthritis [abstract]. Arthritis Rheum. 2002;46:S446.CrossRefGoogle Scholar
  77. 77.
    Cohen SB, Emery P, Greenwald MW, Dougados M, Furie RA, Genovese MC, et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 2006;54:2793–806.CrossRefPubMedGoogle Scholar
  78. 78.
    Manadan AM, Block JA. Rheumatoid arthritis: beyond tumor necrosis factor-alpha antagonists, B cell depletion, and T cell blockade. Am J Ther. 2008;15:53–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Axmann R, Herman S, Zaiss M, Franz S, Polzer K, Zwerina J, et al. CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis. 2008;67:1603–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Schwarz EM, Ritchlin CT. Clinical development of anti-RANKL therapy. Arthritis Res Ther. 2007;9(Suppl 1):S7.CrossRefPubMedGoogle Scholar
  81. 81.
    Bekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Dunstan CR. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res. 2001;16:348–60.CrossRefPubMedGoogle Scholar
  82. 82.
    McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354:821–31.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The Department of Microbiology and Immunology and The Center for Musculoskeletal ResearchUniversity of Rochester Medical CenterRochesterUSA
  2. 2.Department of OrthopaedicsUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations